1 / 33

Joint work with :

Temporal Logic Constraints in the Biochemical Abstract Machine BIOCHAM François Fages, Project-team: Contraintes, INRIA Rocquencourt, France http://contraintes.inria.fr/. Joint work with : Nathalie Sylvain Laurence

maitland
Download Presentation

Joint work with :

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Temporal Logic Constraints in the Biochemical Abstract Machine BIOCHAMFrançois Fages, Project-team: Contraintes, INRIA Rocquencourt, Francehttp://contraintes.inria.fr/ • Joint work with : • Nathalie Sylvain Laurence • Chabrier-Rivier Soliman Calzone • 2002-2004: ARC CPBIO “Process Calculi and Biology of Molecular Networks” • Bockmayr, LORIA, V. Danos, CNRS PPS, V. Schächter, Genoscope Evry

  2. Systems Biology ? • Multidisciplinary field aiming at getting over the complexity walls to reason about biological processes at the system level. • Virtual cell: emulate high-level biological processes in terms of their biochemical basis at the molecular level (in silico experiments) • Beyond providing tools to biologists, Computer Science has much to offer in terms of concepts and methods. • Bioinformatics: end 90’s, genomic sequences  post-genomic data (RNA expression, protein synthesis, protein-protein interactions,… ) • Need for a strong effort on: • - the formal representation of biological processes, • - formal tools for modeling and reasoning about their global behavior.

  3. Language Approach to Cell Systems Biology • Qualitative models:from diagrammatic notation to • Boolean networks [Thomas 73] • Petri Nets [Reddy 93] • Milner’s π–calculus[Regev-Silverman-Shapiro 99-01, Nagasali et al. 00] • Bio-ambients [Regev-Panina-Silverman-Cardelli-Shapiro 03] • Pathway logic [Eker-Knapp-Laderoute-Lincoln-Meseguer-Sonmez 02] • Transition systems [Chabrier-Chiaverini-Danos-Fages-Schachter 04] • Biochemical abstract machine BIOCHAM-1[Chabrier-Fages 03] • Quantitative models: from differential equation systems to • Hybrid Petri nets [Hofestadt-Thelen 98, Matsuno et al. 00] • Hybrid automata [Alur et al. 01, Ghosh-Tomlin 01] • Hybrid concurrent constraint languages [Bockmayr-Courtois 01] • Rules with continuous dynamics BIOCHAM-2[Chabrier-Fages-Soliman 04]

  4. Outline of the Presentation • Introduction • Biocham Rule Language for Modeling Biochemical Systems • Syntax of objects and reactions • Semantics at 3 abstraction levels: Boolean, Concentrations, Populations • Biocham Temporal Logic for Formalizing Biological Properties • CTL for Boolean semantics • Constraint LTL for Concentration semantics • Learning Rules and Parameters from Temporal Properties • Learning reaction rules from CTL specification • Learning kinetic parameter values from Constraint-LTL specification • Conclusion and collaborations

  5. 2. Modeling Biochemical Systems • Small molecules: covalent bonds (outer electrons shared) 50-200 kcal/mol • 70% water • 1% ions • 6% amino acids (20), nucleotides (5), • fats, sugars, ATP, ADP, … • Macromolecules: hydrogen bonds, ionic, hydrophobic, Waals 1-5 kcal/mol • Stability and bindings determined by the number of weak bonds: 3D shape • 20% proteins (50-104 amino acids) • RNA (102-104 nucleotides AGCU) • DNA (102-106 nucleotides AGCT)

  6. Formal Proteins • Cyclin dependent kinase 1 Cdk1 • (free, inactive) • Complex Cdk1-Cyclin B Cdk1–CycB • (low activity) • Phosphorylated form Cdk1~{thr161}-CycB • at site threonine 161 • (high activity) also called • Mitosis Promotion Factor MPF

  7. BIOCHAM Syntax of Objects • E == compound | E-E | E~{p1,…,pn} • Compound: molecule, #gene binding site, abstract @process… • - : binding operator for protein complexes, gene binding sites, … • Associative and commutative. • ~{…}: modification operator for phosphorylated sites, … • Set of modified sites (Associative, Commutative, Idempotent). • O == E | E::location • Location: symbolic compartment (nucleus, cytoplasm, membrane, …) • S == _ | O+S • + : solution operator (Associative, Commutative, Neutral _)

  8. Six Main Reaction Rule Schemas • Complexation: A + B => A-B Decomplexation A-B => A + B • cdk1+cycB => cdk1–cycB • Phosphorylation: A =[C]=> A~{p} Dephosphorylation A~{p} =[C]=> A • Cdk1-CycB =[Myt1]=> Cdk1~{thr161}-CycB • Cdk1~{thr14,tyr15}-CycB =[Cdc25~{Nterm}]=> Cdk1-CycB • Synthesis: _ =[C]=> A. • _ =[#Ge2-E2f13-Dp12]=> cycA • Degradation: A =[C]=> _. • cycE =[@UbiPro]=> _ (not for cycE-cdk2 which is stable)

  9. BIOCHAM Syntax of Reaction Rules • R ::= S=>S | S=[O]=>S | S<=>S | S<=[O]=>S • where A=[C]=>B stands for A+C=>B+C • A<=>B stands for A=>B and B=>A, etc. • N ::= expr for R (import/export SBML format) • Three abstraction levels: • Boolean Semantics: presence-absence of molecules • Concurrent Transition System (asynchronous, non-deterministic) • Concentration Semantics: number / volume of diffusion • Ordinary Differential Equations (deterministic) • Population of molecules: number of molecules • Stochastic Multiset Rewriting

  10. Cell Cycle: G1  DNA Synthesis  G2  Mitosis • G1: CdK4-CycD S: Cdk2-CycA G2,M: Cdk1-CycA • Cdk6-CycD Cdk1-CycB • Cdk2-CycE (MPF)

  11. Mammalian Cell Cycle Model [Kohn 99]

  12. Zoom on Cdk1 • cdk1~{p1,p2,p3} + cycA => cdk1~{p1,p2,p3}-cycA. • cdk1~{p1,p2,p3} + cycB => cdk1~{p1,p2,p3}-cycB. • ... • cdk1~{p1,p3}-cycA =[ Wee1 ]=> cdk1~{p1,p2,p3}-cycA. • cdk1~{p1,p3}-cycB =[ Wee1 ]=> cdk1~{p1,p2,p3}-cycB. • cdk1~{p2,p3}-cycA =[ Myt1 ]=> cdk1~{p1,p2,p3}-cycA. • cdk1~{p2,p3}-cycB =[ Myt1 ]=> cdk1~{p1,p2,p3}-cycB. • ... • cdk1~{p1,p2,p3} =[ cdc25C~{p1,p2} ]=> cdk1~{p1,p3}. • cdk1~{p1,p2,p3}-cycA =[ cdc25C~{p1,p2} ]=> cdk1~{p1,p3}-cycA. • cdk1~{p1,p2,p3}-cycB =[ cdc25C~{p1,p2} ]=> cdk1~{p1,p3}-cycB. • ... • _ =[ E2F13-DP12-gE2 ]=> cycA. • cycB =[ APC~{p1} ]=>_. • ... 800 rules, 165 proteins/genes, 500 variables [Chabrier-Chiaverini-Danos-Fages-Schachter 04]

  13. Boolean Semantics • Associate: • Booleanstate variables to molecules • denoting the presence/absence of molecules in the cell or compartment • A Finite concurrent transition system [Shankar 93] to rules (asynchronous) over-approximating the set of all possible behaviors • A reaction A+B=>C+D is translated into 4 transition rules for the possibly complete consumption of reactants: • A+BA+B+C+D • A+BA+B +C+D • A+BA+B+C+D • A+BA+B+C+D

  14. Concentration Semantics • k1cc for _=>preMPF. • k3cc*[C25~{s1,s2}]*[preMPF] for preMPF=[C25~{s1,s2}]=>MPF. • (k14cc*[CKI]*[MPF],k15cc*[CKI-MPF]) for CKI+MPF<=>CKI-MPF. • k2cc*[preMPF] for preMPF=>_. • k2cc*[MPF] for MPF=>_. • k2u*[APC]*[MPF] for MPF=[APC]=>_. • k4cc*[Wee1]*[MPF] for MPF=[Wee1]=>preMPF. • … • parameter(k1cc,0.25). • … • present({preMPF, Wee1m}). • Compiles into an ODE system • (or a Stochastic Process under • the Population semantics)

  15. Plan • Biocham Rule Language for Modeling Biochemical Systems • Syntax of objects and reactions • Semantics at 3 abstraction levels: Boolean, Concentrations, Populations • Biocham Temporal Logic for Formalizing Biological Properties • Computation Tree Logic for Boolean semantics • Constraint Linear Time Logic for Concentration semantics • Learning Rules and Parameters from Temporal Properties • Learning reaction rules from CTL properties • Learning kinetic parameter values from Constraint LTL properties • Conclusion, collaborations

  16. E, A Non-determinism AG EU EF F,G,U Time 2. Formalizing Biological Properties in Temporal Logics • Boolean Semantics: Computation Tree Logic CTL

  17. Biological Properties formalized in CTL [Chabrier Fages 03] • Aboutreachability: • Can the cell produce some protein P? reachable(P)==EF(P)

  18. Biological Properties formalized in CTL [Chabrier Fages 03] • Aboutreachability: • Can the cell produce some protein P? reachable(P)==EF(P) • Aboutpathways: • Is it possible to produce P without having Q? E(Q U P) • Is state s2 a necessary checkpoint for reaching state s? • checkpoint(s2,s)== E(s2U s)

  19. Biological Properties formalized in CTL [Chabrier Fages 03] • Aboutreachability: • Can the cell produce some protein P? reachable(P)==EF(P) • Aboutpathways: • Is it possible to produce P without having Q? E(Q U P) • Is state s2 a necessary checkpoint for reaching state s? • checkpoint(s2,s)== E(s2U s) • Aboutstationarity: • Is a (partially described) state s a stable state? stable(s)== AG(s) • Is s a steady state (with possibility of escaping) ? steady(s)==EG(s) • Can the cell reach a stable state? EF(stable(s))

  20. Biological Properties formalized in CTL [Chabrier Fages 03] • Aboutreachability: • Can the cell produce some protein P? reachable(P)==EF(P) • Aboutpathways: • Is it possible to produce P without having Q? E(Q U P) • Is state s2 a necessary checkpoint for reaching state s? • checkpoint(s2,s)== E(s2U s) • Aboutstationarity: • Is a (partially described) state s a stable state? stable(s)== AG(s) • Is s a steady state (with possibility of escaping) ? steady(s)==EG(s) • Can the cell reach a stable state? EF(stable(s)) • Aboutoscillations (approximation without strong fairness): • Can the system exhibit a cyclic behavior w.r.t. the presence of P ? oscillation(P)== EG((P  EF P) ^ (P  EF P))

  21. Cell Cycle Model-Checking • biocham: check_reachable(cdk46~{p1,p2}-cycD~{p1}). • Ei(EF(cdk46~{p1,p2}-cycD~{p1})) is true • biocham: check_checkpoint(cdc25C~{p1,p2}, cdk1~{p1,p3}-cycB). • Ai(!(E(!(cdc25C~{p1,p2}) U cdk1~{p1,p3}-cycB))) is true • biocham: nusmv(Ai(AG(!(cdk1~{p1,p2,p3}-cycB) -> checkpoint(Wee1, cdk1~{p1,p2,p3}-cycB))))). • Ai(AG(!(cdk1~{p1,p2,p3}-cycB)->!(E(!(Wee1) U cdk1~{p1,p2,p3}-cycB)))) is false • biocham: why. • -- Loop starts here • cycB-cdk1~{p1,p2,p3} is present • cdk7 is present • cycH is present • cdk1 is present • Myt1 is present • cdc25C~{p1} is present • rule_114 cycB-cdk1~{p1,p2,p3}=[cdc25C~{p1}]=>cycB-cdk1~{p2,p3}. • cycB-cdk1~{p2,p3} is present • cycB-cdk1~{p1,p2,p3} is absent • rule_74 cycB-cdk1~{p2,p3}=[Myt1]=>cycB-cdk1~{p1,p2,p3}. • cycB-cdk1~{p2,p3} is absent • cycB-cdk1~{p1,p2,p3} is present

  22. Cell Cycle Model-Checking • 800 rules, 165 proteins and genes, 500 variables. • BIOCHAM-NuSMV symbolic model-checker time in seconds:

  23. Concentration Semantics: Constraint LTL • Constraints over concentrations and derivatives as FOL formulae over the reals: • [M] > 0.2 • [M]+[P] > [Q] • d([M])/dt < 0 • Constraint LTL operators for time F, U, G (no non-determinism). • F([M]>0.2) • FG([M]>0.2) • F ([M]>2 & F (d([M])/dt<0 & F ([M]<2 & d([M])/dt>0 & F(d([M])/dt<0)))) • oscil(M,n)= F (d([M])/dt>0 & F(d([M])/dt<0 & … )) • Language to formalize the relevant properties observed in experiments

  24. Outline • Biocham Rule Language for Modeling Biochemical Systems • Syntax of objects and reactions • Semantics at 3 abstraction levels: Boolean, Concentrations, Populations • Biocham Temporal Logic for Formalizing Biological Properties • Computation Tree Logic for Boolean semantics • Constraint Linear Time Logic for Concentration semantics • Learning Rules and Kinetics from Temporal Properties • Learning reaction rules • Learning kinetic parameter values • Conclusion, collaborations

  25. 3. Learning Rules from Temporal Properties • General framework of Theory Revision [de Raedt 92] • Theory T: BIOCHAM model • molecule declarations • reaction rules: complexation, phosphorylation, etc… • Training Examples φ: biological properties formalized in temporal logic • Reachability • Checkpoints • Stable states • Oscillations • Bias P: Rule patterns and parameter range • Kind of reaction rules to change • Find R in P such that T,R |= φ

  26. Learning Reaction Rules from CTL Specification • The biological properties of the system are added as CTL formulas • biocham: add_spec({reachable(MPF),checkpoint(cdc25C~{p1,p2},MPF),...}). • Suppose that the MPF activation rule is missing in the model • biocham: delete_rule(MPF~{p}=[cdc25C~{p1,p2}]=>MPF). • biocham: check_all. • The specification is not satisfied. • This formula is the first not verified: Ei(EF(MPF)) • Rules can be searched to correct the model w.r.t. specification: • biocham: learn_one_rule(all_elementary_interaction_rules). • Possible rules to be added: 3 • _=[cdc25C~{p1,p2}]=>MPF • MPF~{p}=[cdc25C~{p1,p2}]=>MPF • CKI+MPF~{p}=[cdc25C~{p1,p2}]=>CKI-MPF

  27. Learning Reaction Rules from CTL Specification • Example: finding an intermediary step between MPF and APC activation • biocham: absent(X). add_rule(_=>X). add_rule(X=>_). • biocham: add_specs({ Ei(reachable(X)), Ai(oscil(X)), • Ai(AG(!APC->checkpoint(X,APC))), • Ai(AG(!X->checkpoint(MPF,X))) }). • biocham: check_all. • The specification is not satisfied. • This formula is the first not verified: Ai(AG(!APC->!(E(!X U APC)))) • Biocham searches for revisions of the model satisfying the specification • biocham: revise_model. • Deletion(s): _=[MPF]=>APC. _=>X. • Addition(s): _=[X]=>APC. _=[MPF]=>X.

  28. Theory Revision Algorithm • General idea of constraint programming: replace a generate-and-test algorithm by a constrain-and-generate algorithm. • Anticipate whether one has to add or remove a rule: • ACTL formulae contain only A quantifiers: checkpoint,… • If false, remains false after adding a rule  delete rule • Remove a rule on the path given by the model checker (why command) • ECTL formulae contain only E quantifiers: reachability, oscillation, … • If false, remain false after deleting a rule  add rule • Unclassified CTL formulae • Mixed E and A quantifiers • Guides the backtracking search of the possible changes to the model

  29. Learning Kinetic Parameters with Constraint-LTL • parameter(k3cc,0.1). • k3cc*[MPF~{p}]*[cdc25C~{p1,p2}] for • MPF~{p}=[cdc25C~{p1,p2}]=>MPF. • biocham: trace_get([k3cc],[(0,5)],20, • oscil(MPF,4)&F([MPF]>1),100). • Found parameters that make • oscil(MPF,4) & F([MPF]>1) true: • parameter(k3cc,2.5).

  30. Traces from Numerical Simulation • From a system of Ordinary Differential Equations • dX/dt = f(X) • Numerical integration produces a discretization of time (adaptive step size Runge-Kutta and Rosenbrock method for stiff systems) • The trace is a linear Kripke structure: • (t0,X0), (t1,X1), …, (tn,Xn)… • the derivatives can be added to the trace • (t0,X0,dX0/dt), (t1,X1,dX1/dt), …, (tn,Xn,dXn/dt)… • Equality x=v true if xi≤v & xi+1≥v or if xi≥v & xi+1≤v

  31. Constraint-Based LTL (Forward) Model Checking • Hypothesis 1: the initial state is completely known • Hypothesis 2: the formula can be checked over a finite period of time [0,T] • Simple algorithm based on the trace of the numerical simulation: • Run the numerical simulation from 0 to T producing values at a finite sequence of time points • Iteratively label the time points with the sub-formulae of f that are true: • Add f to the time points where a FOL formula f is true, • Add F fto the previous time points labeled by f, • Add f1 U f2to the predecessor time points of f2 while they satisfy f1, • (Add G f to the states satisfying f until T (optimistic abstraction…))

  32. Conclusion • The biochemical abstract machine BIOCHAM implements: • A simplerule-based languagefor modeling biochemical processes with three abstraction levels: • Boolean semantics: presence/absence of molecules • Molecule Concentration semantics (ODE) • Molecule Population semantics (stochastic) • A powerful temporal logic language for formalizing biological properties • CTL (implemented with NuSMV model checker) • Constraint LTL (implemented in Prolog) • An original machine learning system • Reaction rule discovery from CTL specification • Parameter estimation from constraint LTL specification • Issue of compositionality: model reuse in different contexts • Issue of abstraction/refinement: model simplification/decomposition

  33. Collaborations • STREP APRIL 2: Applications of probabilistic inductive logic programming • Luc de Raedt, Freiburg, Stephen Muggleton, Imperial College London,… • Learning in a probabilistic logic setting • NoE REWERSE: Reasoning on the web with rules and semantics • François Bry, Münich, Rolf Backofen Jena, Mike Schroeder Dresden,… • Connecting Biocham to the semantic web: gene and protein ontologies • INRIA Bang, Jean Clairambault, Benoît Perthame • INSERM, Villejuif, Francis Lévi “Cancer chronotherapies” • ULB, Albert Goldbeter, Bruxelles • Coupled models of cell cycle, circadian cycle, drugs.

More Related