540 likes | 634 Views
Accelerator and Detector. KEK-B accelerator. Two separate rings: 8GeV(e - )/3.5GeV(e + ). Finite crossing angle. Design luminosity = 10 34 cm -2 sec -1. Achieved lum =1.06 10 34 cm -2 sec -1. Belle logged: 158 fb -1. KEKB Collider.
E N D
KEK-B accelerator Two separate rings: 8GeV(e-)/3.5GeV(e+) Finite crossing angle Design luminosity = 1034 cm-2sec-1 Achieved lum =1.06 1034 cm-2sec-1 Belle logged: 158 fb-1 KEKB Collider
Future upgrade planned for 2005 [luminosity:factor of 2 ] For a finite crossing angle Geometrical luminosity loss Beam instability Without crab cavities: 22mrad With crab cavities: Complete overlap of beams Crab cavities Head-on collision
Belle Detector Aerogel Cherenkov cnt. n=1.015~1.030 SC solenoid 1.5T 3.5GeV e+ CsI(Tl) TOF counter 8GeV e- Tracking + dE/dx Si vtx. det. 3 lyr. DSSD m / KL detection 14/15 lyr. RPC+Fe
Particle identification • Particle identification: ACC, TOF , dE/dx from CDC PID(K) = = pKdE/dx pKTOF pKACC • Very good in a wide momentum range
Upgrade (fall-2003): New beam-pipe SR mask SR mask No SR mask New beam-pipe is longer , 16cm 24cm
Upgrade (fall-2003): New beam-pipe HER Downstream Double walled Be beampipe HER QCSLE LER mask LER QC2 QCSRP QC1 BC3 HER Upstream Removed for new beam-pipe
Upgrade (fall-2003): New beam-pipe SR mask SR mask No SR mask New beam-pipe is longer , 16cm 24cm
Upgrade (fall-2003): cont… • More synchrotron radiation protection LER HER QC1 QC2 LER mask BC3 Saw tooth shape No SR hits Beam-pipe
Upgrade (fall-2003): New beam-pipe SR mask No SR mask New beam-pipe is longer , 16cm 24cm
Upgrade (fall-2003): SVD2 • Increase the number of layers , 3 layers 4 layers • smaller radius for inner-most layer • Better vertex resolution ( 1/distance 1st detection layer)
CP violation and Unitarity of CKM matrix What is ? g
Standard Model lagrangian for q-W interaction Lint(t) = d3x (LqW(x) + L†qW(x)) LqW(x)= VijUi ( 1- 5) Dj W Dj (x ) = Ui (x ) = V= (CKM matrix) Experimentally, V has a hierarchical structure. ( = 0.22)
Transformation of Lint under CP exchanges particle (n) antiparticle ( n ) CP: flips momentum sign ( p -p ) keeps the spin z-component () the same under CP, LqW transforms as CP LqW(x) P†C† = ud Vij (Ui (x’) ( 1- 5) Dj(x’) W(x’))† * x ’ =( t , -x) If ud can be chosen such that ud Vij = Vij * (1) * * Then, Lint(t) becomes invariant under CP: • CP LqW(x) P†C† =L†qW(x) • CP Lint(t) P†C† = d3x CP (LqW(x) + LqW(x)) P†C† = d3x (LqW(x) + LqW(x) ) = Lint(t)
Condition for CP invariance ud Vij = Vij * * Condition (1) is equivalent to rotating the quark phases to make Vij all real In general, there are 5 phase differences for 6 quarks 5 elements of VCKM can be set to real always + 3 phases can be related to Euler angles There is one phase which cannot be removed CP violation
Wolfenstein parameterization Wolfenstein parameterization
What is the angle ? Orthogonality of d-colmn and b-column: * * * VudVub + VcdVcb + VtdVtb = 0 ⃔ * * VtdVtb VudVub ⃔ ⃔ * VcdVcb a * ⃔ = arg b * -b = arg CKM fitter: 39° 80° @ 95% C.L
Methods to extract the angle s u b - K - Vub o - - D u c Vcb b - c B - s o B D - K - - - - u u u u • One needs interference between D0K- and D0K- D0 and D0 decay to common final state Example: K+K-, KS0 etc ( CP eigenstates) KS+- Dalitz analysis K*K (singly Cabibbo suppressed mode) K+- ( doubly Cabibbo suppressed mode) I will discuss
(*)- B -> D K - - CP (Gronau , London and Wyler) PLB 253(1991)483 PLB 265(1991)172
Gronau-London-Wyler method to extract - B- DCPK- where Dcp (D0 ± D0 ) - • Amp(B- DCPK-) = Amp(B- D0K-) + Amp(B- D0K-) - KS0, KS, KS, KS, KS’ K+K-, +- D0 and D0 CP + modes 2 diagrams CP - modes s u b - K - Vub o - - D u c Vcb - b B c s * o - =arg(Vub) D - B K - - - - u u u u Color-favored Color-suppressed ~ Vcb ~Vub
GLW method cont… Strong final-state-interaction phase: B- D0K- relative to B- D0K- isei _ _ • Amp(B- DCPK-) = |Amp(B- D0K-)| + |Amp(B- D0K-)| ei(+) _ • Amp(B+ DCPK+)= |Amp(B+ D0K+)| + |Amp(B- D0K+)| ei(-) — A(B- D0K-) A(B- DCPK-) — A(B- D0K-) = A(B+ D0K+) - A(B+ DCPK+) A(B+ D0K+)
GLW method cont… _ • Amp(B- DCPK-) = |Amp(B- D0K-)| + |Amp(B- D0K-)| ei(+) _ • Amp(B+ DCPK+)= |Amp(B+ D0K+)| + |Amp(B- D0K+)| ei(-) — A(B- D0K-) A(B- DCPK-) — A(B- D0K-) = A(B+ D0K+) - A(B+ DCPK+) A(B+ D0K+) Reconstruct the two triangles Non-vanishing strong phase ( 0) Direct CP violation
GLW method cont… One can measure even if =0( No strong phase) no direct CPV One needs to measure the sides and reconstruct triangle — A(B- D0K-) A(B- DCPK-) — A(B- D0K-) = A(B+ D0K+) - A(B+ DCPK+) A(B+ D0K+)
Problem: Color-suppressed mode B- D0K- B- D0K- and K+- K+- — A(B- D0K-) How to measure ? - Ratio of amplitudes ~ 1 Good or Bad ? Method of Atwood, Dunietz and Soni
Theoretical solution One can instead measure: R1,2 = DCP Dnon-CP R /R = 1 + r2 2r cos()cos() B(B- D1,2K-) + C.C DCP where R = B (B- D1,2-) + C.C R1 + R2 = 2( 1 + r2) r = |BKD|/|BKD| 2 In principle one can obtain r Useful inequality: Sin2 < R 1,2 R1 or R2 < 1.0 (assuming small r )
Solution - B (B- D1,2K-) B(B+ D1,2K+) 2r sin()sin() A1,2 = = R1,2 + B (B- D1,2K-) B (B+ D1,2K+) 4 measurements : A1,2 and R1,2 But A1R1= - A2R 2 r = |BKD|/|BKD| 3 independent measurements 3 unknowns ( r , , ) Solve !
Variables to identify signal B f1….. fn Energy and absolute value of momentum is known: EB = Ebeam = 5.29 GeV E PB = = 0.34 GeV/c • Requires that the candidates satisfy EB = |PB| =| | Mbc Peaks at: 0.0 GeV 5.279 GeV Instead of EB and PB , we historically use Energy difference M ~ 2.5 MeV ~ 10 better inv mass Beam constrained mass bc
Hadronic cross sections @(4S) peak energy channel (nb) 1.05 1.39 0.35 0.35 1.30 (4S) uu dd ss cc Hadronic total 4.44 ~ 76% is qq 2 jet-type (“ continuum events”) The continuum is monitored by taking data just below the (4S) resonance (60 MeV) off (4S) x on (4S)(Belle) KEK-B operates here • Rare decay background is usually dominated by continuum
Suppressing continuum events • Variables to distinguish signal from continuum events • CosB signal ~ sin2 continuum ~ flat B B e+ e- Continuum BB Signal
Suppressing continuum signal • Fisher discriminant of variables x = (x1…….xn) • F = .x : constants to be chosen to maximize separation(S)between signal and background , S = func (FS , FB ) • = 0 continuum Xi = Fox-Wolfram moments continuum signal Get values of ’s
Suppressing continuum Most effective way to suppress the continuum events Combine Fisher discriminant(F) and cosB Likelihood ratio (LR) _ _ L(BB) LR(BB) = _ L(BB) + L(qq) continuum _ _ _ signal L(BB) = L(BB)(F) x L(BB)(cosB) _ { 0 for continuum events _ LR(BB) peak at: 1 for signal(BB) events Performance( B- D0[K-+]- ) : LR > 0.4 keeps 87.5% signal removes 73% continuum LR
Results for calibration mode B- D0K-(-) @78fb-1 /K separation by Aerogel Cherenkov Counter ( with dE/dx, and TOF) Prompt Kaon is reconstructed with pion mass assumption shifts E by -49 MeV Allows simple cuts/fits : B- D0 K- B- D0 - 347.5±21 6058±88 B- D0 - 134.4±14.7 B-D0*-, D0- continuum B-D0*K-, D0K*- D00, D0 D00, D0 R = = 0.077 ± 0.005(stat) ± 0.006(sys)
Results for B- D1K-(-) mode CP-even For B- D0[K+K-]K- B- D0[+-]K- 23 background 100 B- K+K-K- B- K-+- Can be estimated from D0 sideband data included in systematic error 47.3±8.9 683.4±32.8 15.6±6.4 R = =0.093±0.018±0.008 Double ratio R1 = 1.21 ±0.25 (stat)±0.14 (sys) 22.1±6.1 25±6.5 CP asymmetry A1 = +0.06 ± 0.19 (stat)±0.04(sys)
Results for B- D2K-(-) mode CP-odd For B- D0[KS]K- where +-0 background For B- D0[K*-+]K- where K*-KS- and + +0 KS- invariant mass difference> 75 MeV 52.4±9.0 648.3±31.0 R = =0.108±0.019±0.007 6.3±5.0 Double ratio R2 = 1.41 ±0.27 (stat)±0.145(sys) 29.9±6.5 20.5±5.6 CP asymmetry A2 = - 0.19 ± 0.17 (stat)±0.05(sys) A1,2and R1,2 are useful quantities for determining
Measuring using B- DCPK- mode Using the measured value of and R1,2 A1,2 We find: R1 R2 r = |BKD|/|BKD| r2 = = 0.31 0.21 2 Just 1.5 away from physical boundary: r2 =0 otherwise r would be imaginary A lot more statistics needed for this method to be useful This corresponds to r = 0.57 0.19 very unlikely (theory: 0.1 0.2)
Measurement of “r” s u b - K - Vub o - - D u c Vcb b - c B - s o D - B K - - - - u u u u r =
Measurement of “r” using B0 D0K0 mode s c b K- o - D - Vcb Vcb u u o B b o B- c o K D s - - - - u u d d BF(B0D0K0)=(5.0±1.3) 10-5 r = (CKM factor)(color factor) r 0.2 0.45 ?? Color factor= ~ ~ 0.4
Measuring using B- DCPK- mode Assume we measured r = 0.2 , what would be? A1,2 =0 R1,2 = 1.4 1 + r2 2r cos()cos() |A1,2|=0.25 1.2 R2(-1) A1,2 = 2r sin()sin() R1,2 1.0 R1(-1) R1,2 Taken from Gronau 0.8 A1,2 =0 0.6 (degrees) At 1, the angle <33 or > > Excluded by CKM fit
*- Additional modes: B- DCPK mode Same principle as B- -> DCPK- decay: K- to be replaced by K*- First step: Flavor specific modes D0 K-+ , K-+0 , K-+-+ Only KS- is used (K-0 could be included worry: handling background) 169.5±15.4 16
*- Consistency check: B- D0K mode Yields in KS- mass and helicity bins • Points with error bars data • • Hatched histogram Signal Monte Carlo Fit to E for each bin
*- B- DCPK mode 13.1 ± 4.3 B- D1K*- 4.3 7.2 ± 3.6 2.4 B- D2K*- A1 = -0.02 ± 0.33(stat) ± 0.07(sys) CP asymmetries : A2 = 0.19± 0.50(stat) ± 0.04(sys) Cannot now constrain -> need more data
Additional modes: Atwood, Dunietz and Soni method K- K- Doubly Cabibbo Suppressed Cabibbo Allowed K+- D0 D0 1 Maximum Interference B- B- Measure B- DK- in two decay modes of D: e.gK+- and KS0 ( their CP conjugates) [B- (K+-)K-] [B+ (K-+)K+] [B- (KS0)K-] [B+ (KS0)K+] Solve for , , and r K+- KS0
Additional modes: ADS method @78fb-1 Only ~ 10-12 events, Cabibbo-suppressed D0K down by ~1/15 E E Promising method but requires lots & lots of data
B-D0(KS+-)K- Dalitz analysis - Previously: B- DCPK- where DCP =(D0 D0 ) both D0 and D0 decays to CP eigenstates ( K+K-..) - D0K0p+p- DKSp+p- D0K0p+p- Amp(B+ ->DK+) = f(m+2,m-2) + r. ei( + ) f(m-2 , m+2 ) where m+/-2= M2(KS+/-) r = |BKD|/|BKD| f( m+2,m-2) = ak. ei Ak(m+2,m-2) + b ei -> both 2-body resonances and non-res component
Simple example Suppose allDKS+p- decays are via K*p D0K*+p- D0K*-p+ KS p+ KS p- M(KS p+)2 Dalitz plot interference M(KS p-)2
Reality is more complex ( & better) D0KS p+p- many amplitudes & strong phases(13) lots of interference K*p KSs KSf2 KSr