1 / 54

M A G N E T IC E F F E C T O F C U R R E N T - I

M A G N E T IC E F F E C T O F C U R R E N T - I 1 . M a gn e t i c E ff e c t of C u r r e nt – O e r s t e d ’ s E x p e r i m e nt 2 . A m p e r e ’ s S w i m m i ng R u l e 3 . M a x w e l l ’ s C o r k S c r e w R u l e 4 . R i ght H a nd T hu m b R u l e

manasa
Download Presentation

M A G N E T IC E F F E C T O F C U R R E N T - I

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. MAGNETICEFFECTOFCURRENT-I 1.MagneticEffectofCurrent–Oersted’sExperiment 2.Ampere’sSwimmingRule 3.Maxwell’sCorkScrewRule 4.RightHandThumbRule 5.Biot–Savart’sLaw 6.MagneticFieldduetoInfinitelyLongStraightCurrent– carryingConductor 7.MagneticFieldduetoaCircularLoopcarryingcurrent 8.MagneticFieldduetoaSolenoid

  2. MagneticEffectofCurrent: Anelectriccurrent(i.e.flowofelectriccharge)producesmagneticeffectinthespacearoundtheconductorcalledstrengthofMagneticfieldorsimplyMagneticfield. Oersted’sExperiment: N WhencurrentwasallowedtoflowthroughaE needlekeptdirectlybelowthewire,theneedlewasfoundtodeflectfromitsnormalposition. I K N theneedlewasfoundtodeflectintheE oppositedirectiontotheearliercase. K wireplacedparalleltotheaxisofamagnetic I Whencurrentwasreversedthroughthewire,

  3. Rulestodeterminethedirectionofmagneticfield: Ampere’sSwimmingRule: ImaginingamanwhoswimsinthedirectionofcurrentfromsouthtonorthfacingamagneticneedlekeptunderhimsuchthatcurrententershisfeetthentheNorthpoleoftheneedlewilldeflecttowardshislefthand,i.e. towardsWest.SI Maxwell’sCorkScrewRuleorRightII HandScrewRule: Iftheforwardmotionofanimaginaryrighthandedscrewisinthedirectionofthecurrentthroughalinearconductor,thenthedirectionofrotationofthescrewgivesthedirectionofthemagneticlinesofforcearoundtheconductor. N W N B B

  4. I Ifacurrentcarryingconductorisimaginedtobeheldintherighthandsuchthatthethumbpointsinthedirectionofthecurrent,thenthetipsofthefingersencirclingtheconductorwillgivethedirectionofthemagneticlinesofforce. Biot–Savart’sLaw:BThestrengthofmagneticfielddBduetoasmall currentelementdlcarryingacurrentIatapoint proportionaltoI,dl,sinθandinverselyrP proportionaltothesquareofthedistance(r2)θ whereθistheanglebetweendlandr.dl i)dBαIdBαIdlsinθ ii)dBαdl iii)dBαsinθµ0Idlsinθ iv)dBα1/r24πr2 Right Hand Thumb Rule or Curl Rule: x Pdistantrfromtheelementisdirectly r2 I P’ dB=

  5. Biot–Savart’sLawinvectorform: µ0Idlxr 4πr2 µ0Idlxr 4πr3 Valueofµ0=4πx10-7TmA-1orWbm-1A-1 DirectionofdBissameasthatofdirectionofdlxrwhichcanbedeterminedbyRightHandScrewRule. ItisemergingatP’andenteringxatPintotheplaneofthediagram. Currentelementisavectorquantitywhosemagnitudeisthevector productofcurrentandlengthofsmallelementhavingthedirectionoftheflowofcurrent.(Idl) dB= dB=

  6. MagneticFieldduetoaStraightWirecarryingcurrent: AccordingtoBiot–Savart’slaw µ0Idlsinθ 4πr2 sinθ=a/r=cosФI orr=a/cosФ tanФ=l/aaxB orl=atanФlθФP dl=asec2ФdФdlr SubstitutingforranddlindB, µ0IcosФdФ 4πa Magneticfieldduetowholeconductorisobtainedbyintegratingwithlimits -Ф1toФ2.(Ф1istakennegativesinceitisanticlockwise) Ф2µ0IcosФdФµI(sinФ+sinФ) -Ф14πa4πa dB= Ф2 Ф 1 dB= B=012 B=∫dB =∫

  7. Ifthestraightwireisinfinitelylong,B thenФ1=Ф2=π/2 µ02Iµ0I DirectionofBissameasthatofdirectionofdlxrwhichcanbedeterminedbyRightHandScrewRule. ItisperpendiculartotheplaneofthediagramandenteringintotheplaneatP.MagneticFieldLines: II BB a0a B= 4πa B= 2πa or

  8. MagneticFieldduetoaCircularLoopcarryingcurrent: 1)Atapointontheaxialline: dl XY Ф OФdBsinФ II Ф X’Y’ dl Theplaneofthecoilisconsideredperpendiculartotheplaneofthediagramsuchthatthedirectionofmagneticfieldcanbevisualizedontheplaneofthediagram. AtCandDcurrentelementsXYandX’Y’areconsideredsuchthatcurrentatCemergesoutandatDentersintotheplaneofthediagram. C dBcosФ dB dBco 90°r a xФP dBsinФ dBcosФ dB D

  9. µ0IdlsinθordB=µ0Idl Theangleθbetweendlandris90°becausetheradiusoftheloopisverysmallandsincesin90°=1 Thesemi-verticalanglemadebyrtotheloopisФandtheanglebetweenranddBis90°.Therefore,theanglebetweenverticalaxisanddBisalsoФ. dBisresolvedintocomponentsdBcosФanddBsinФ.Duetodiametricallyoppositecurrentelements,cosФ componentsarealwaysoppositetoeachotherandhencetheycancelouteachother. SinФcomponentsduetoallcurrentelementsdlgetaddedupalongthesamedirection(inthedirectionawayfromtheloop). µ0I(2πa)a 4πr24π(a2+x2)(a2+x2)½ µ0Ia2 dB= r2 4π r2 4π µ0IdlsinФ or B=∫dBsinФ=∫ B= B=2(a2+x2)3/2 (µ0,I,a,sinФareconstants,∫dl=2πaandr&sinФare replacedwithmeasurableandconstantvalues.)

  10. SpecialCases: i)AtthecentreO,x=0.B=2aB ii)Iftheobservationpointisfarawayfromthecoil,thena<<x.So,a2canbeneglectedincomparisonwithx2. B= Differentviewsofdirectionofcurrentandmagneticfieldduetocircularloopofacoil: B BB II I µ0I x0x µ0Ia2 2x3 I

  11. 2)Batthecentreoftheloop: dl Theplaneofthecoilislyingontheplanea90°I isclockwisesuchthatthedirectionofxO magneticfieldisperpendicularandintoIdB Theangleθbetweendlandais dB=90°becausetheradiusofthe µ0Idlsin90°=1 4πa2 µ0IB (µ0,I,aareconstantsand∫dl=2πa) 0a ofthediagramandthedirectionofcurrent theplane. µ0Idl µ0Idlsinθ dB= a2 4π a2 4π loopisverysmallandsince B=∫dB=∫ B=2a

  12. MagneticFieldduetoaSolenoid: B xxxxxxx II TIP: Whenwelookatanyendofthecoilcarryingcurrent,ifthecurrentisinanti-clockwisedirectionthenthatendofcoilbehaveslikeNorthPoleandifthecurrentisinclockwisedirectionthenthatendofthecoilbehaveslikeSouthPole.

  13. MAGNETICEFFECTOFCURRENT-II 1.LorentzMagneticForce 2.Fleming’sLeftHandRule 3.ForceonamovingchargeinuniformElectricandMagneticfields 4.ForceonacurrentcarryingconductorinauniformMagneticField 5.Forcebetweentwoinfinitelylongparallelcurrent-carryingconductors 6.Definitionofampere 7.Representationoffieldsduetoparallelcurrents 8.Torqueexperiencedbyacurrent-carryingcoilinauniform MagneticField 9.MovingCoilGalvanometer 10.ConversionofGalvanometerintoAmmeterandVoltmeter 11.DifferencesbetweenAmmeterandVoltmeter

  14. LorentzMagneticForce: Acurrentcarryingconductorplacedinamagneticfieldexperiencesaforcewhichmeansthatamovingchargeinamagneticfieldexperiencesforce. F or q+θB whereθistheanglebetweenvandB SpecialCases: i)Ifthechargeisatrest,i.e.v=0,thenFm=0. notexperienceanyforce.q-θB oranti-paralleltothedirectionofthemagnetic field,thenFm=0.F tothemagneticfield,thentheforceis maximum.Fm(max)=qvB Fm= q(vxB) Fm= (qvBsin θ)n I v I So,a stationarychargeinamagnetic fielddoes ii)Ifθ=0°or180°i.e.ifthechargemovesparallel v iii)Ifθ=90°i.e.ifthechargemovesperpendicular

  15. Fleming’sLeftHandRule: (F)Fieldthumboflefthandarestretchedmutually perpendiculartoeachotherandthecentralfingerpointstocurrent,forefingerpointstomagneticfield,thenthumbpointsinthedirectionofmotion (force)onthecurrentcarryingconductor.Electric Current TIP:(I) Rememberthephrase‘emf’torepresentelectriccurrent,magneticfieldandforceinanticlockwisedirectionofthefingersoflefthand. ForceonamovingchargeinuniformElectricandMagnetic Fields: WhenachargeqmoveswithvelocityvinregioninwhichbothelectricfieldEandmagneticfieldBexist,thentheLorentzforceis F=qE+q(vxB)orF=q(E+vxB) Force Magnetic Ifthecentralfinger,forefingerand (B)

  16. Forceonacurrent-carryingconductorinauniform MagneticField: Forceexperiencedbyeachelectronin F f=-e(vdxB) vd Abetheareaofcrosssectionofthe-B conductor,thenno.ofelectronsintheAl I Forceexperiencedbytheelectronsindlis dF=nAdl[-e(vdxB)]=-neAvd(dlXB) =I(dlxB)whereI=neAvdand-vesignrepresentsthat F=∫dF=∫I(dlxB) F=I(lxB)orF=IlBsinθ I theconductoris Ifnbethenumberdensityofelectrons, θ dl elementdlisnAdl. thedirectionofdlisoppositetothat ofvd)

  17. Forcesbetweentwoparallelinfinitelylongcurrent-carryingconductors:Forcesbetweentwoparallelinfinitelylongcurrent-carryingconductors: MagneticFieldonRSduetocurrentinPQisQS µ0I1(inmagnitude) ForceactingonRSduetocurrentI2throughitisI1I2 F21=2πr2orF21=2πrB2xB1 B1actsperpendicularandintotheplaneofthediagramby RightHandThumbRule.So,theanglebetweenlandB1is90˚.r lislengthoftheconductor. MagneticFieldonPQduetocurrentinRSis µ0I2(inmagnitude)PRForceactingonPQduetocurrentI1throughitis µ0I1I2l(Theanglebetweenland F12=2πr12πremergingout) µ0I1I2l 2πrµII 2πr B1 = 2π r F12 F21 µ0 I1 µ0 I1I2l I l sin90˚ B2= 2πr µ0I2 B2is90˚andB2Is F12 = or Ilsin90˚ F12=F21=F= F/l=012 N/m Forceperunit lengthoftheconductoris

  18. QSQS I1 I1I2 FFFF rrI2 PRPR ByFleming’sLeftHandRule,ByFleming’sLeftHandRule,theconductorsexperiencetheconductorsexperienceforcetowardseachotherandforceawayfromeachotherhenceattracteachother.andhencerepeleachother. x x x

  19. DefinitionofAmpere: ForceperunitlengthoftheF/l=N/m WhenI1=I2=1Ampereandr=1m,thenF=2x10-7N/m. Oneampereisthatcurrentwhich,ifpassedineachoftwoparallelconductorsofinfinitelengthandplaced1mapartinvacuumcauseseachconductortoexperienceaforceof2x10-7Newtonpermetreoflengthoftheconductor. RepresentationofFieldduetoParallelCurrents: I1I2I1I2 BB N µ0I1I2 2πr conductoris

  20. TorqueexperiencedbyaCurrentLoop(Rectangular)inauniformMagneticField:TorqueexperiencedbyaCurrentLoop(Rectangular)inauniformMagneticField: LetθbetheanglebetweentheplaneoftheloopandbS coilisperpendiculartothemagneticfield.θ FRSI |FSP|=IbBsinθxB FQR=I(bxB)l |FQR|=IbBsinθFR θ Moreovertheyactalongthesamelineofaction(axis)Q FPQ=I(lxB) |FPQ|=IlBsin90°=IlBForcesFPQandFRSbeingequalinmagnitudebut oppositeindirectioncancelouteachotheranddonot FRS=I(lxB)produceanytranslationalmotion.Buttheyact |FRs|=IlBsin90°=IlBalongdifferentlinesofactionandhence FSP thedirectionofthemagneticfield.Theaxisofthe P FSP=I(bxB) PQ I Forces FSP and FQR areequalinmagnitudebut oppositeindirectionandtheycancelouteachother. andhencedonotproducetorque. FQR producetorqueabout theaxisofthecoil.

  21. TorqueexperiencedbythecoilisFRS ז=FPQxPN(inmagnitude) ז=IlB(bcosθ)bxS ז=IlbBcosθ ז=IABcosθ(A=lb)PθN ז=NIABcosθ(whereNistheno.ofturns)Fn IfΦistheanglebetweenthenormaltothecoilandthedirectionofthemagneticfield,then Φ+θ=90°i.e.θ=90°-ΦIR So,B ז=IABcos(90°-Φ)Q ז=NIABsinΦ NOTE: Onemustbeverycarefulinusingtheformulaintermsofcosorsinsinceitdependsontheangletakenwhetherwiththeplaneofthecoilorthenormalofthecoil. θ Φ B PQ Φ I n

  22. TorqueinVectorform: ז=NIABsinΦ ז=(NIABsinΦ)n(wherenisunitvectornormaltotheplaneoftheloop) ז=NI(AxB)orז=N(MxB) (sinceM=IAistheMagneticDipoleMoment)Note: 1)Thecoilwillrotateintheanticlockwisedirection(fromthetopview,accordingtothefigure)abouttheaxisofthecoilshownbythedottedline. 2)Thetorqueactsintheupwarddirectionalongthedottedline(accordingtoMaxwell’sScrewRule). 3)IfΦ=0°,thenז=0. 4)IfΦ=90°,thenזismaximum.i.e.זmax=NIAB 5)Units:BinTesla,IinAmpere,Ainm2andזinNm. 6)Theaboveformulaefortorquecanbeusedforanyloopirrespectiveofitsshape.

  23. MovingCoilorSuspendedCoilorD’ArsonvalTypeGalvanometer: TorqueexperiencedbyT ז=NIABsinΦ RestoringtorqueinthePBW coilisEM ז=kα(wherekisFRS restoringtorqueperunitPS angulartwistinthewire) Atequilibrium, B I=kαFPQ ThefactorsinΦcanbeTS eliminatedbychoosing RadialMagneticField. T–TorsionHead,TS–Terminalscrew,M–Mirror,N,S–Polespiecesofamagnet,LS–LevellingScrews,PQRS–Rectangularcoil,PBW–PhosphorBronzeWire thecoilis angulartwist,αisthe NIABsinΦ=kα NABsinΦ LS LS N x SQ R HairSpring

  24. RadialMagneticField: S alongthemagneticlinesofforceinwhicheverNS positionthecoilcomestorestinequilibrium. So,theanglebetweentheplaneofthecoilandB themagneticfieldis0°. ortheanglebetweenthenormaltotheplaneofMirror thecoilandthemagneticfieldis90°. i.e.sinΦ=sin90°=1Lamp2α I=kαorI=GαwhereG=kScale iscalledGalvanometerconstant CurrentSensitivityofGalvanometer: Itisthedefectionofgalvanometerperunitcurrent.I=k VoltageSensitivityofGalvanometer:αNAB Itisthedefectionofgalvanometerperunitvoltage.VkR The(top view PS of) planeof thecoilPQRS lies P NAB NAB αNAB =

  25. ConversionofGalvanometertoAmmeter: GalvanometercanbeconvertedintoammeterIIgG PotentialdifferenceacrossthegalvanometerS andshuntresistanceareequal. IgG I–Ig ConversionofGalvanometertoVoltmeter: Galvanometercanbeconvertedintovoltmeter Potentialdifferenceacrossthegivenloadresistanceisthesumofp.dacrossgalvanometerandp.d.acrossthehigh V Ig byshuntingitwitha verysmallresistance. Is=I- Ig (I–Ig)S= IgG or S= Ig GR byconnecting itwith averyhighresistance. V resistance. -G V=Ig(G+R) or R=

  26. DifferencebetweenAmmeterandVoltmeter: S.No.AmmeterVoltmeter ItisalowresistanceItisahighresistanceinstrument. 2 ResistanceisGS/(G+S)ResistanceisG+R ShuntResistanceisSeriesResistanceis 3(GIg)/(I–Ig)andisverysmall.(V/Ig)-Gandisveryhigh. ItisalwaysconnectedinItisalwaysconnectedinparallel. ResistanceofanidealResistanceofanidealvoltmeter ItsresistanceislessthanthatItsresistanceisgreaterthanthat ItisnotpossibletodecreaseItispossibletodecreasethe 7 therangeofthegivenrangeofthegivenvoltmeter.ammeter. 1 instrument. 4 series. 5 ammeteriszero. isinfinity. 6 ofthegalvanometer. ofthevoltmeter.

  27. MAGNETICEFFECTOFCURRENT-III 1.Cyclotron 2.Ampere’sCircuitalLaw 3.MagneticFieldduetoaStraightSolenoid 4.MagneticFieldduetoaToroidalSolenoid

  28. HFCyclotron: SB D1WD2+ D2 N W W–WindowB-MagneticField Working:ImaginingD1ispositiveandD2isnegative,the+velycharged towardsD2.DuetoperpendicularmagneticfieldandaccordingtoFleming’s WhenitisabouttoleaveD2,D2becomes+veandD1becomes–ve. describethesemi-circularpath.Theprocesscontinuestillthechargetraversesthroughthewholespaceinthedeesandfinallyitcomesoutwithveryhighspeedthroughthewindow. Oscillator B D1 D1,D2–Dees N,S–MagneticPolePieces particlekept atthecentreandinthegapbetween thedeesgetaccelerated LeftHandRulethechargegetsdeflectedanddescribessemi-circularpath. ThereforetheparticleisagainacceleratedintoD1whereitcontinuesto

  29. Theory: Themagneticforceexperiencedbythechargeprovidescentripetalforcerequiredtodescribecircularpath. mv2/r=qvBsin90°(wherem–massofthechargedparticle, Bqrq–charge,v–velocityonthepathof mangleb/nvandB) Iftisthetimetakenbythechargetodescribethesemi-circularpathinsidethedee,then πrπmTimetakeninsidethedeedependsonlyon v Bqthespeedofthechargeortheradiusofthepath. IfTisthetimeperiodofthehighfrequencyoscillator,thenforresonance, 2πm Bq Iffisthefrequencyofthehighfrequencyoscillator(CyclotronFrequency),then Bq 2πm v= radius–r,Bismagneticfieldand90°isthe themagneticfieldandm/qratioandnoton t= or t= T=2t or T= f=

  30. MaximumEnergyoftheParticle: KineticEnergyofthechargedparticleis 222 mm MaximumKineticEnergyofthechargedparticleiswhenr=R(radiusoftheD’s). B2q2R2 m TheexpressionsforTimeperiodandCyclotronfrequencyonlywhenmremainsconstant.(Otherquantitiesarealreadyconstant.) Butmvarieswithvaccordingtom0 Einstein’sRelativisticPrincipleasper[1–(v2/c2)]½ Iffrequencyisvariedinsynchronisationwiththevariationofmassofthechargedparticle(bymaintainingBasconstant)tohaveresonance,thenthecyclotroniscalledsynchro–cyclotron. Ifmagneticfieldisvariedinsynchronisationwiththevariationofmassofthechargedparticle(bymaintainingfasconstant)tohaveresonance,thenthecyclotroniscalledisochronous–cyclotron. NOTE:Cyclotroncannotbeusedforacceleratingneutralparticles.Electronscannotbeacceleratedbecausetheygainspeedveryquicklyduetotheirlightermassandgooutofphasewithalternatinge.m.f.andgetlostwithinthedees. Bqr ( Bqr K.E.=½mv2=½m =½ )2 K.E.max=½ m=

  31. Ampere’sCircuitalLaw: Thelineintegral∫B.dlforaclosedcurveisequaltoµ0timesthenet I BB r Proof:Currentisemerging ∫B.dl=∫B.dlcos0°outandthemagnetic =∫B.dl=B∫dl =B(2πr)=(µ0I/2πr)x2πr ∫B.dl=µ0I currentIthreadingthrough theareabounded bythecurve. ∫ B. dl=µ0I dl I O field isanticlockwise.

  32. MagneticFieldatthecentreofaStraightSolenoid: SaRB PaQ xxxxxxx I(whereIisthenetcurrentI ∫B.dl=∫B.dl+∫B.dl+∫B.dl+∫B.dl =∫B.dlcos0°+∫B.dlcos90°+∫0.dlcos0°+∫B.dlcos90° =B∫dl=B.aandµ0I0=µ0naIB=µ0nI (wherenisno.ofturnsperunitlength,aisthelengthofthepathand Iisthecurrentpassingthroughtheleadofthesolenoid) µ0I0 0 threadingthroughthesolenoid) ∫ B.dl= PQ QR RS SP

  33. MagneticFieldduetoToroidalSolenoid(Toroid): dl B =B∫dl=B(2πr)r AndµI=µn(2πr)IOQ B=µ0nI NOTE:I Themagneticfieldexistsonlyinthe tubularareaboundbythecoilanditdoesnotexistintheareainsideandoutsidethetoroid. i.e.BiszeroatOandQandnon-zeroatP. ∫ ∫ B.dl=µ0I0 P B≠0 ∫ B.dlcos0° B.dl= B=0 00 0 B=0

  34. MAGNETISM 1.BarMagnetanditsproperties 2.CurrentLoopasaMagneticDipoleandDipoleMoment 3.CurrentSolenoidequivalenttoBarMagnet 4.BarMagnetanditDipoleMoment 5.Coulomb’sLawinMagnetism 6.ImportantTermsinMagnetism 7.MagneticFieldduetoaMagneticDipole 8.TorqueandWorkDoneonaMagneticDipole 9.TerrestrialMagnetism 10.ElementsofEarth’sMagneticField 11.TangentLaw 12.PropertiesofDia-,Para-andFerro-magneticsubstances 13.Curie’sLawinMagnetism 14.HysteresisinMagnetism

  35. Magnetism: -Phenomenonofattractingmagneticsubstanceslikeiron,nickel,cobalt,etc. •Abodypossessingthepropertyofmagnetismiscalledamagnet. •Amagneticpoleisapointneartheendofthemagnetwheremagnetismisconcentrated. •Earthisanaturalmagnet. •Theregionaroundamagnetinwhichitexertsforcesonothermagnetsandonobjectsmadeofironisamagneticfield. Propertiesofabarmagnet: 1.AfreelysuspendedmagnetalignsitselfalongNorth–Southdirection. 2.Unlikepolesattractandlikepolesrepeleachother. 3.Magneticpolesalwaysexistinpairs.i.e.Polescannotbeseparated. 4.Amagnetcaninducemagnetisminothermagneticsubstances. 5.Itattractsmagneticsubstances. Repulsionisthesuresttestofmagnetisation:Amagnetattractsironrodaswellasoppositepoleofothermagnet.Thereforeitisnotasuretestofmagnetisation. But,ifarodisrepelledwithstrongforcebyamagnet,thentherodissurelymagnetised.

  36. RepresentationofUniformMagneticField: xxxxx xxxxx xxxxx xxxxx xxxxx UniformfieldUniformfieldperpendicular planeofthediagramplaneofthediagramofthediagram CurrentLoopasaMagneticDipole&DipoleMoment: MagneticDipoleMomentis AM=IAn BSIunitisAm2. TIP: Whenwelookatanyonesideoftheloopcarryingcurrent,ifthecurrent I isinanti-clockwisedirectionthenthatsideoftheloopbehaveslike thatsideoftheloopbehaveslikeMagneticSouthPole. &emergingoutoftheplane Uniformfieldonthe perpendicular&intothe MagneticNorthPoleandifthecurrentisinclockwisedirectionthen

  37. CurrentSolenoidasaMagneticDipoleorBarMagnet: B xxxxxxx II TIP:Playpreviousandnexttounderstandthesimilarityoffieldlines.

  38. BarMagnet: 1.ThelinejoiningthepolesofthemagnetSPMPN MagneticLength magnetiscalledmagneticlengthofthemagnet. 3.Thedistancebetweentheendsofthemagnetiscalledthegeometricallengthofthemagnet. 4.Theratioofmagneticlengthandgeometricallengthisnearly0.84. MagneticDipole&DipoleMoment: Apairofmagneticpolesofequalandoppositestrengthsseparatedbyafinitedistanceiscalledamagneticdipole. Themagnitudeofdipolemomentistheproductofthepolestrengthmandtheseparation2lbetweenthepoles. MagneticDipoleMomentisM=m.2l.lSIunitofpolestrengthisA.m ThedirectionofthedipolemomentisfromSouthpoletoNorthPolealongtheaxisofthemagnet. GeographicLength iscalledmagneticaxis. 2.Thedistancebetweenthepolesofthe

  39. Coulomb’sLawinMagnetism: Theforceofattractionorrepulsionbetweentwomagneticpolesisdirectlyproportionaltotheproductoftheirpolestrengthsandinverselyproportionaltothesquareofthedistancebetweenthem. r αr2 kmmµ0m1m2 F=r24πr2 (wherek=µ0/4πisaconstantandµ0=4πx10-7TmA-1) Invectorformµ0m1m2r µ0m1m2r F αm1m2 m1 m2 F= 12 or F= r2 4π F=4πr3

  40. MagneticIntensityorMagnetisingforce(H): i)MagneticIntensityatapointistheforceexperiencedbyanorthpoleofunitpolestrengthplacedatthatpointduetopolestrengthofthegivenmagnet.H=B/µ ii)Itisalsodefinedasthemagnetomotiveforceperunitlength. iii)Itcanalsobedefinedasthedegreeorextenttowhichamagneticfieldcanmagnetiseasubstance. iv)Itcanalsobedefinedastheforceexperiencedbyaunitpositivechargeflowingwithunitvelocityinadirectionnormaltothemagneticfield. v)ItsSIunitisampere-turnsperlinearmetre.vi)Itscgsunitisoersted. MagneticFieldStrengthorMagneticFieldorMagneticInductionorMagneticFluxDensity(B): i)MagneticFluxDensityisthenumberofmagneticlinesofforcepassingnormallythroughaunitareaofasubstance.B=µH ii)ItsSIunitisweber-m-2orTesla(T). iii)Itscgsunitisgauss.1gauss=10-4Tesla

  41. MagneticFlux(Φ): i)Itisdefinedasthenumberofmagneticlinesofforcepassingnormallythroughasurface. ii)ItsSIunitisweber. RelationbetweenBandH: B=µH(whereµisthepermeabilityofthemedium) MagneticPermeability(µ): Itisthedegreeorextenttowhichmagneticlinesofforcecanpassenterasubstance. ItsSIunitisTmA-1orwbA-1m-1orHm-1 RelativeMagneticPermeability(µr): Itistheratioofmagneticfluxdensityinamaterialtothatinvacuum. Itcanalsobedefinedastheratioofabsolutepermeabilityofthematerialtothatinvacuum. µr=B/B0orµr=µ/µ0

  42. IntensityofMagnetisation:(I): i)Itisthedegreetowhichasubstanceismagnetisedwhenplacedinamagneticfield. ii)Itcanalsobedefinedasthemagneticdipolemoment(M)acquiredperunitvolumeofthesubstance(V). iii)Itcanalsobedefinedasthepolestrength(m)perunitcross-sectionalarea(A)ofthesubstance. iv)I=M/V v)I=m(2l)/A(2l)=m/A vi)SIunitofIntensityofMagnetisationisAm-1. MagneticSusceptibility(cm): i)Itisthepropertyofthesubstancewhichshowshoweasilyasubstancecanbemagnetised. ii)Itcanalsobedefinedastheratioofintensityofmagnetisation(I)inasubstancetothemagneticintensity(H)appliedtothesubstance. iii)cm=I/HSusceptibilityhasnounit. RelationbetweenMagneticPermeability(µr)&Susceptibility(cm): µr=1+cm

  43. MagneticFieldduetoaMagneticDipole(BarMagnet): i)Atapointontheaxiallineofthemagnet: µ02MxBN θ Ifl<<x,thenθ µ02MBS PNS BSBN ofthemagnet:SMNP ll BQ=4π(y2+l2)3/2 Ifl<<y,thenMagneticFieldatapointontheaxiallineacts µ0MMagneticFieldatapointontheequatorialline BQQ yB=B-B θθ x BP=4π(x2–l2)2 BP≈4πx3 ii) Atapointontheequatorialline µ0M alongthedipolemomentvector. BP≈4πy3 actsoppositetothedipolemomentvector.

  44. TorqueonaMagneticDipole(BarMagnet)inUniformMagneticField: TheforcesofmagnitudemBactoppositetoeachotherand hencenetforceactingonthebar2lmB magneticfieldiszero.So,theremBθ magnet. Howevertheforcesarealongdifferentlinesofactionandconstituteacouple.Hencethemagnetwillrotateandexperience torque.M Torque=MagneticForcexdistanceθB t=mB(2lsinθ) =MBsinθt t=MxB DirectionofTorqueisperpendicularandintotheplanecontainingMandB. N M magnetduetoexternaluniform isnotranslationalmotionofthe S B

  45. WorkdoneonaMagneticDipole(BarMagnet)inUniformMagnetic Field: mB dθmB θmB θ1 W=MB(cosθ1-cosθ2) IfPotentialEnergyisarbitrarilytakenzerowhenthedipoleisat90°,thenP.Einrotatingthedipoleandincliningitatanangleθis PotentialEnergy=-MBcosθ Note: PotentialEnergycanbetakenzeroarbitrarilyatanypositionofthedipole. dW=tdθ =MBsinθdθ θ2 θ1 2 W=∫MBsinθdθ B mB

  46. TerrestrialMagnetism: i)GeographicAxisisastraightlinepassingthroughthegeographicalpolesoftheearth.Itistheaxisofrotationoftheearth.Itisalsoknownaspolaraxis. ii)GeographicMeridianatanyplaceisaverticalplanepassingthroughthegeographicnorthandsouthpolesoftheearth. iii)GeographicEquatorisagreatcircleonthesurfaceoftheearth,inaplaneperpendiculartothegeographicaxis.Allthepointsonthegeographicequatorareatequaldistancesfromthegeographicpoles. iv)MagneticAxisisastraightlinepassingthroughthemagneticpolesoftheearth.ItisinclinedtoGeographicAxisnearlyatanangleof17°. v)MagneticMeridianatanyplaceisaverticalplanepassingthroughthemagneticnorthandsouthpolesoftheearth. vi)MagneticEquatorisagreatcircleonthesurfaceoftheearth,inaplaneperpendiculartothemagneticaxis.Allthepointsonthemagneticequatorareatequaldistancesfromthemagneticpoles.

  47. Declination(θ):Geographic TheanglebetweenthemagneticmeridianandMeridian atthatplace.δ BBV Linesshownonthemapthroughtheplacesthathavethesamedeclinationarecalledisogonic line.MagneticMeridian Linedrawnthroughplacesthathavezerodeclinationiscalledanagonicline. DiporInclination(δ): Theanglebetweenthehorizontalcomponentofearth’smagneticfieldandtheearth’sresultantmagneticfieldataplaceisDiporInclinationatthatplace. Itiszeroattheequatorand90°atthepoles. Linesdrawnuponamapthroughplacesthathavethesamediparecalledisocliniclines. Thelinedrawnthroughplacesthathavezerodipisknownasanaclinicline.Itisthemagneticequator. BH thegeographicmeridianataplaceisDeclination θ Itvariesfromplacetoplace.

  48. HorizontalComponentofEarth’sMagneticField(BH): Thetotalintensityoftheearth’smagneticfielddoesnotlieinanyhorizontalplane.Instead,itliesalongthedirectionatanangleofdip(δ)tothehorizontal.Thecomponentoftheearth’smagneticfieldalongthehorizontalatanangleδiscalledHorizontalComponentofEarth’sMagneticField. BH=Bcosδ SimilarlyVerticalComponentisBV=Bsinδ 22 TangentLaw:B2B Ifamagneticneedleissuspendedinaregion wheretwouniformmagneticfieldsare perpendiculartoeachother,theneedlewillN θ thetangentoftheangleistheratioofthetwofields. tanθ=B2/B1 suchthat B=√BH+BV alignitselfalongthedirectionoftheresultant fieldofthetwofieldsatanangleθsuchthat B1

  49. ComparisonofDia,ParaandFerroMagneticmaterials: DIAPARAFERRO 1.DiamagneticParamagneticsubstancesFerromagneticsubstancessubstancesarethosearethosesubstancesarethosesubstancessubstanceswhicharewhicharefeeblyattractedwhicharestrongly feeblyrepelledbyabyamagnet.attractedbyamagnet. magnet.Eg.Aluminium,Eg.Iron,Cobalt,Nickel,Eg.Antimony,Bismuth,Chromium,AlkaliandGadolinium,Dysprosium,Copper,Gold,Silver,Alkalineearthmetals,etc. Quartz,Mercury,Alcohol,Platinum,Oxygen,etc.water,Hydrogen,Air, Argon,etc. 2.WhenplacedinThelinesofforceprefertoThelinesofforcetendtomagneticfield,thelinesofpassthroughthecrowdintothespecimen.forcetendtoavoidthesubstanceratherthanair. substance. NS SNSN

  50. 2.Whenplacedinnon-Whenplacedinnon-Whenplacedinnon-uniformmagneticfield,ituniformmagneticfield,ituniformmagneticfield,itmovesfromstrongertomovesfromweakertomovesfromweakertoweakerfield(feeblestrongerfield(feeblestrongerfield(strongrepulsion).attraction).attraction).2.Whenplacedinnon-Whenplacedinnon-Whenplacedinnon-uniformmagneticfield,ituniformmagneticfield,ituniformmagneticfield,itmovesfromstrongertomovesfromweakertomovesfromweakertoweakerfield(feeblestrongerfield(feeblestrongerfield(strongrepulsion).attraction).attraction). 3.WhenadiamagneticWhenaparamagneticrodWhenaparamagneticrodrodisfreelysuspendedinisfreelysuspendedinaisfreelysuspendedina auniformmagneticfield,ituniformmagneticfield,ituniformmagneticfield,italignsitselfinadirectionalignsitselfinadirectionalignsitselfinadirectionperpendiculartothefield.paralleltothefield.paralleltothefieldvery quickly. NSNSNS

More Related