200 likes | 390 Views
Prof. RNDr. Josef Molnár, CSc., PřF UP v Olomouci Univerzita třetího věku. Mnohostěny. Rozcvička: Krychle má 9 různých rovin symetrie. Nakreslete je. Řešení. Mnohostěn. je část prostoru ohraničeného konečným počtem rovinných mnohoúhelníků. Geometrický útvar nazveme konvexní,
E N D
Prof. RNDr. Josef Molnár, CSc., PřF UP v Olomouci Univerzita třetího věku Mnohostěny
Rozcvička: Krychle má 9 různých rovin symetrie. Nakreslete je.
Mnohostěn • je část prostoru ohraničeného konečným počtem rovinných mnohoúhelníků.
Geometrický útvar nazveme konvexní, právě když lze libovolné dva jeho body spojit úsečkou, jejíž každý bod náleží danému geometrickému útvaru.
Eulerova charakteristika mnohostěnu Leonhard Euler 1707 - 1783 je číslo E = s + v – h kde s je počet stěn, v počet vrcholů a h počet hran daného konvexního mnohostěnu.
Eulerova věta „ V každém konvexním mnohostěnu platí Eulerův vztah s + v – h = 2 kde s je počet stěn, v počet vrcholů a h počet hran daného konvexního mnohostěnu.“
Keplerův „Kosmický pohár“ • - sféra Merkuru • opsán osmistěn, který je • vepsán do sféry Venuše • sféře Venuše opsán dvacetistěn • sféra Země • dvanáctistěn • sféra Marsu • čtyřstěn • sféra Jupitera • krychle • sféra Saturnu Johannes Kepler 1571 - 1630
Deltatopy • V definici PT vynecháme požadavek na stejnou valenci vrcholů (q) a „mnohoúhelníky“ nahradíme „trojúhelníky“. • Existuje právě 8 deltatopů.
Archimédova tělesa Archimédes ze Syrakus 287 – 212 př. n. l. - lze vytvořit z PT odříznutím vrcholů nebo hran tak, aby vznikly pravidelné konvexní mnohoúhelníky.
Hvězdicovité pravidelné mnohostěny V definici PT jsou vynechány požadavky konvexnosti.
Pravidelné antihranoly mají dvě protilehlé stěny (podstavy) tvořené shodnými pravidelnými n–úhelníky a ostatní stěny jsou shodné rovnoramenné trojúhelníky. pravidelný šestiúhelníkový antihranol (regular hexagonal antiprisma)
Platónova tělesa v biosféře Mřížovka červená Virus dětské obrny Radiolaria (mřížovci)
Poincarého zobecnění Eulerovy věty • Pro mnohostěny platí s + v - h = 2 - 2r, kde r je (topologický) rodplochy. Zjednodušeně lze říci, že hodnota rodu plochy je rovna počtu v ní existujících „průchodů“.
Domácí úkol - rozmyslet 1. Najděte nekonvexní mnohostěn, který nesplňuje Eulerův vztah. 2.Najděte nekonvexní mnohostěn, který splňuje Eulerův vztah. 3.Je dán konvexní čtrnáctistěn s devíti vrcholy. Dokažte, že na něm existuje vrchol, ze kterého vychází aspoň 5 hran. 4.Určete počty rovin souměrnosti všech Platonových těles. 5.Na kolik částí se rozpadnou, provedeme-li všechny tyto řezy současně? 6.Kolik prvků mají grupy zákrytových pohybů Platonových těles?
Literatura • Březina, F. a kol.: Stereochemie a některé fyzikálně chemické metody studia anorganických látek. UP, Olomouc 1994. • Huylebrouck, D.: Regular Polyhedral Lattices of Genus 2: 11 Platonic Equivalents? In: Bridges Conference Proceedings, Pécs 2010. • Molnár, J., Kobza, J.:Extremálne a kombinatorické úlohy z geometrie. SPN, Bratislava 1991. • Molnár, J., Kobza, J.: Extremálne a kombinatorické úlohy z geometrie. SPN, Bratislava 1991. • Vacík, J.: Obecná chemie. SPN, Praha 1986. • Vacík, J. a kol.: Přehled středoškolské chemie. SPN, Praha 1996. • Zimák, J.: Mineralogie a petrografie. UP, Olomouc 1993