460 likes | 598 Views
National Weather Service River Forecast System Model Calibration. COMET Hydromet 00-2 7 March 2000 2290 East Prospect Road, Suite 1 Fort Collins, Colorado 80525. Calibration. Calibration process
E N D
National Weather ServiceRiver Forecast SystemModel Calibration COMETHydromet 00-27 March 2000 2290 East Prospect Road, Suite 1 Fort Collins, Colorado 80525
Calibration • Calibration process • Estimation of parameter values which will minimize differences between observed and simulated streamflows • Calibration problems • Parameter interaction • Non-unique solutions • Time-consuming • Inaccuracies • Non-linearities • Lack of understanding
Calibration System Parameter estimation/optimization and watershed simulation • Input • Point or areal estimates of historical precipitation, temperature, and potential evaporation • Initial hydrologic conditions • Output • Basin areal averages for point value inputs • Simulated hydrographs for historical analysis or use in ESP • Parameter values for models in operational forecast and ESP systems
Calibration System (continued) • Characteristics • Performs computations for few forecast points for many time steps • Uses operations table • Compatible with operational system and ESP • Produces graphical output for manual calibration • Includes algorithms for automatic optimization • Applications • Historical watershed simulation • Model calibration
Model Calibration • Strategy • Select river system • Prepare data • MAP - Mean Areal Precipitation • MAT - Mean Areal Temperature • PE - Potential Evaporation • QME - Mean Daily Discharge • QIN - Instantaneous Discharge
Model Calibration (continued) • Calibrate least complicated headwater basins • Select calibration period • Estimate initial parameter - observed Qs • Trial and error using MCP • Statistics, observed versus simulated plots • Proper approach to parameter adjustment • Automatic parameter optimization - OPT • Fine tuning - MCP • Calibrate other headwater areas • Calibrate local areas
Model Calibration (continued) • Important considerations • Model structure, simulation processes • Effects of parameter changes • Use of the forecast information
Data Preparation MAP Algorithms - Mean Areal Precipitation Techniques for converting point precipitation measurements into areal measurements and distributing them properly in time Daily and hourly data Grid point algorithm • Estimating precipitation at a point (1/D2) • Estimate: >least, <greatest • 100-150 points within basin • Normalize at each grid point, then renormalize Thiessen weights Grid point versus Thiessen Two-pass algorithm - distribute daily, then estimate missing Consistency plots MAT Algorithms - Mean Areal Temperature Max - min data Grid point algorithm (1/D) Elevation weighting factor Centroid (1/DP) Conversion to mean temperatures Consistency plots MAPE - Mean Areal Potential Evaporation Evaporation pan data MAPE vs. Mean seasonal curve QME QIN
Historical Data Analysis • General Information Needed • Station data on Calibration files • Station history infro - obs times, changes, location, moves • Topog map of basin MAP Specific Information Non- Mountainous Mountains --basin boundary --isohyetal map --station weights MAT Specific Information --mean max/min temperatures Non-Mountainous Mountains --basin boundary --areal-elev curve MAPE Specific Information --Evaporation maps --mean monthly evap --station weights • PXPP • check consistency • compute normals • MAT3 • check consistency • MAPE • check consistency • generate daily time • series of MAPE • TAPLOT3 • get mean max/min for • mean zone elevation • MAP3 • (re)check consistency • generate time series • of MAP • MAT3 • generate time • series of MAT Temperature Evaporation Precipitation
E T Demand Precipitation Input Px Impervious Area E T Direct Runoff PCTIM ADIMP Pervious Area Impervious Area Upper Zone Surface Runoff EXCESS Tension Water UZTW Free Water UZFW E T UZK Interflow E T Percolation Zperc. Rexp Total Channel Inflow Distribution Function E T RIVA Streamflow 1-PFREE PFREE Lower Zone Free Water Tension Water P S LZTWLZFP LZFS RSERV Supplemental Base flow LZSK E T LZPK Total Baseflow Primary Baseflow Side Subsurface Discharge Sacramento Model Structure
Impervious and Direct Runoff Surface Runoff Interflow Discharge Supplemental Baseflow Primary Baseflow Time Hydrograph Decomposition
SAC-SMA Model Precipitation Impervious and Direct Runoff Pervious Impervious Surface Runoff Evaporation Upper Zone Interflow Supplemental Baseflow Lower Zone Primary Baseflow Sacramento Soil Moisture Components
Initial Soil-moisture ParameterEstimates By Hydrograph Analysis
Initial Soil-moisture Parameter Estimates By Hydrograph Analysis (continued) LZSK - Supplemental baseflow recession (always > LZPK) Flow that typically persists anywhere from 15 days to 3 or 4 months
Initial Soil Moisture Parameters Estimates by Hydrograph Analysis (continued)
Initial Soil Moisture Estimates by Hydrograph Analysis (continued)
Automatic Optimization • Program OPT3 • Uses operations table • Compatible with MCP, OFS, ESP • Objective functions • Daily RMS error • Monthly volume RMS error • | S - O |**Exp. • | log S - log O | **Exp. • Correlation coefficient • Maximum Likelihood Estimator
Automatic Optimization (continued) • Program OPT3 (continued) • Optimization schemes • Pattern search • Adaptive random search • Shuffled complex evolution • Buffer • Exclusion periods • Low flows • Convergence criteria • Optimize SAC-SMA, SNOW-17, UG, API-SLC, XIN-SMA