410 likes | 650 Views
Corso di Laurea in Biologia Sanitaria Universita' di Padova C.I. DI METODI STATISTICI PER LA BIOLOGIA, INFORMATICA E LABORATORIO DI INFORMATICA (MOD. B ) 8 + 32 ore. D ocente: Dr. Stefania Bortoluzzi Dipartimento di Biologia Universita' di Padova viale G. Colombo 3, 35131, Padova
E N D
Corso di Laurea in Biologia Sanitaria Universita' di PadovaC.I. DI METODI STATISTICI PER LA BIOLOGIA, INFORMATICA E LABORATORIO DI INFORMATICA (MOD. B)8 + 32 ore Docente: Dr. Stefania Bortoluzzi Dipartimento di Biologia Universita' di Padova viale G. Colombo 3, 35131, Padova Tel. 0039 049 8276214 Email: stefibo@bio.unipd.it
III LEZIONE • Dati d'espressione genica: • ESTs • SAGE • Microarray • NCBI GEO
ESPRESSIONE DEL GENOMA UMANO NELLE CELLULE DIFFERENZIATE • Tutte le cellule di un organismo hanno lo stesso corredo genomico • L’espressione genica tessuto specifica determina il fenotipo morfo-funzionale dei tipi cellulari e tissutali • In ogni cellula differenziata ed in ogni particolare momento dello sviluppo e’ attivo solo un sottoinsieme di geni
REGOLAZIONE DELL’ESPRESSIONE GENICA • Puo’ agire su ciascuno dei livelli che caratterizzano il passare dell’informazione genica dal DNA alle proteine • Negli Eucarioti superiori la regolazione dell’espressione genica si svolge principalmente come controllo della trascrizione • Principali tipi di regolazione: • Controllo epigenetico • Controllo trascrizionale • Controllo post-trascrizionale
“One-gene approach” Il gene di interesse e’ espresso in un tessuto o in un dato momento dello sviluppo ? Quanto e’ attivo dal punto di vista trascrizionale ? Real Time PCR PCR semiquantitativaIbridazione DNA genico o cDNA con RNA totale o poly(A)+RNA (Northern blot)Ibridazione in situ “Large-scale approach” Quali geni sono espressi in un tessuto ed in un dato momento dello sviluppo ? Quanto ciascuno di essi e’ attivo dal punto di vista trascrizionale ? Profilo d’espressione del genoma(TRASCRITTOMA)
METODI PER LO STUDIO SU LARGA SCALA DELL’ESPRESSIONE GENICA • Sequenziamento sistematico di ESTsda librerie di cDNA • SAGE (Serial Analysis of Gene Expression) • cDNA microarrays
EST EST SEQUENCING mRNA of different genes cDNA LIBRARY
EST • Il sequenziamento del DNA “codificante” si basa sulla purificazione dell'RNA messaggero da cellule o da campioni di tessuto e sulla sua retrotrascrizione in vitro in una sequenza di DNA complementare (cDNA). • In genere i cDNA vengono frammentati e clonati in vettori batterici. Si ottengono in questo modo delle collezioni di batteri, nelle quali ogni colonia contiene un inserto corrispondente ad un frammento di sequenza di un gene espresso, dette librerie di cDNA.
EST Utilità delle EST • Scoperta di nuovi geni • Mappaggio di nuovi geni • Identificazione degli esoni lungo estese sequenze genomiche (Gene Prediction) • Studio dello splicing alternativo
EST • Una libreria di cDNA, che viene preparata dal messaggero contenuto nelle cellule di uno specifico tessuto, può essere considerata come un'istantanea che riproduce la composizione della popolazione dei messaggeri presenti nel tessuto in un particolare momento dello sviluppo dell'organismo e in determinate condizioni fisiologiche. • Le librerie di cDNA in cui i cloni da sequenziare vengono scelti in modo casuale e sulle quali non vengono effettuate né operazioni di sottrazione né di normalizzazione, possono essere usate per descrivere, sia qualitativamente siaquantitativamente, lapopolazione dei messaggeri.
EST UniGene Human Release Statistics Total sequences in clusters: 3115711 Total number of clusters sets: 95928 22094sets contain at least one known gene 94710sets contain at least one EST 20876sets contain both genes and ESTs ESTIMATE OF THE LEVEL OF EXPRESSION OF A GIVEN GENE Sample of 12919 ESTs corresponding to 4460 genes/trascripts eg. Rhodopsin: 65 retina ESTs 65 / 12919 = 0.503%
SAGE SAGE Serial Analysis of Gene Expression SAGE è un metodo sperimentale ideato per utilizzare i vantaggi del sequenziamento su larga scala per avere informazioni quantitative di espressione genica (Velculescu et al. 1995, Zhang et al, 1997) Con questa tecnica e’ possibile stimare il livello d’espressione di ciascun gene, attraverso la misura del numero di volte in cui la TAG che lo rappresenta compare in un campione abbastanza grande di TAGs sequenziate a partire dal messaggero del tessuto in analisi Tag to Gene mapping Gene to Tag mapping Consiste nel sequenziamento da messaggeri cellulari di brevi oligonucleotidi, che fungono da etichette di sequenza (TAG)
SAGE Il metodo si basa su tre principi: • una sequenza di 9 paia di basi permette di identificare 49 (262144) diversi trascritti, dal momento che una "tag" viene ottenuta da una posizione specifica di ogni trascritto (12bp) • le "tag" possono essere unite insieme in serie, a costituire lunghe molecole di DNA, che vengono clonate e sequenziate in modo automatizzato • il numero di volte in cui una singola "tag" viene osservata permette di quantificare l'abbondanza del messaggero identificato nella popolazione dei messaggeri e, indirettamente, il livello di espressione del gene corrispondente. Una TAG e’ una sequenza di lunghezza definita direttamente adiacente al 3’ del sito di restrizione piu’ 3’, nel messaggero da cui proviene, per l’enzima utilizzato (spesso NIaIII)
SAGE Sintesi DNA a doppia elica a partire dai messaggeri con primer oligo(dT) biotinilato Separazione del cDNA in 2 aliquote, ciascuna ligata con un linker diverso, contenente un sito di taglio per un enzima di restrizione (tagging enzyme) che taglia ad una distanza definita dal sito riconociuto (20bp) Il linker con attaccato un breve tratto di cDNA (9-12 bp) viene rilasciato Taglio con enzima di restrizione ed isolamento della porzione 3’ del cDNA per purificazione mediante sfere a streptavidina Analisi automatizzata dei risultati: identificazione di tutte le specie di tags, conteggio della frequenza di ciascuna, assegnazione a sequenze geniche note ed annotazione Clonaggio dei concatameri e sequenziamento Ligazione tags a due a due, taglio ditags in modo da creare estremita’ coesive
SAGE • Il risultato della SAGE e’ di tipo digitale: una lista di tags e la frequenza di ciascuna di esse • La fase in cui si stabilisce la corrispondenza tra tag e gene e’ cruciale per una corretta stima del livello d’espressione del gene • La corrispondenza tag-gene non e’ sempre biunivoca, come ci si aspetterebbe • Gli errori di sequenziamento hanno effetti molto pesanti sui dati SAGE (1% 10% che ci sia almeno 1 errore su 10 bp) • Le assegnazioni tag/EST sono affette da un errore maggiore
MICROARRAY Esperimenti di Microarray Permettono l’analisi dell’espressione di migliaia di geni simultaneamente
MICROARRAY = malato = sano Gene 1 Gene 2 Misura dell’espressione dei geni con i microarray
MICROARRAY Analisi dell’immagine • Identificazione della posizione degli spot • Costruzione di un’area locale intorno ad ogni spot • Calcolo dell’intensità di ogni singolo spot • Calcolo del background locale
GeneChip Affymetrix Ibridizzazione della sonda marcata Scansione del GeneChip con scanner laser
MICROARRAY Elaborazione dei dati
EST SAGE MICROARRAY
Matrice dei risultati con più condizioni sperimentali • Quali geni sono differenzialmente espressi ? • Quali e quanti geni sono coespressi?
Obiettivi dell’analisi saranno… • Identificazione geni differenzialmente espressi • Identificazione pattern di espressione comuni • Identificazione di geni coespressi con geni di funzione nota
CLUSTER ANALISI simili Identificazionedi gruppi di geni con profili di espressione Simili rispetto a cosa ? distanza Definizione di I geni sono punti nello spazio: punti vicini nello spazio sono raggruppati insieme
CLUSTER ANALISI • DUE STEPS: • Misura di similarita’ • Diverse misure • Standardizzazione dei dati • Linking method • criterio per stabilire i gruppi • Metodi gerarchici e non gerarchici