1 / 43

I N T E G R A L & APLIKASINYA

I N T E G R A L & APLIKASINYA. GISOESILO ABUDI, SPd blog : soesilongeblog.wordpress.com e-mail : gisoesilo_wp@yahoo.com. Tujuan Umum. Mempelajari Jenis Integral baik integral Tak Tentu maupun Integral Tertentu serta mempelajari kaidah-kaidah dari masing-masing jenis integral.

mika
Download Presentation

I N T E G R A L & APLIKASINYA

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. I N T E G R A L & APLIKASINYA GISOESILO ABUDI, SPd blog : soesilongeblog.wordpress.com e-mail : gisoesilo_wp@yahoo.com

  2. Tujuan Umum Mempelajari Jenis Integral baik integral Tak Tentu maupun Integral Tertentu serta mempelajari kaidah-kaidah dari masing-masing jenis integral.

  3. Tujuan Khusus • Integral digunakan dalam mencari suatu fungsi asalnya jika diketahui fungsi turunannya. Ini merupakan penerapan Integral Tidak Tentu. • Integral juga digunakan dalam menghitung Surplus Konsumen dan Surplus Produsen dengan cara menghitung luas di bawah kurva. Ini merupakan penerapan Integral tertentu.

  4. PENDAHULUAN • Pada dasarnya integral terdiri atas dua jenis yang dikenal dengan integral tak tentu dan integral tentu.

  5. INTEGRAL TAK TENTU Integral tak tentu merupakan konsep yang berhubungan dengan perincian fungsi asal atau fungsi total dari fungsi turunannya yang diketahui.Secara umum penulisannya: F(x) + K = dx Dengan K : konstanta F(x) : integral dx: diferensial F(x) + K : fungsi asal atau fungsi total

  6. Formula Integral TakTentu dx maka : Formula Integral Tertentu dx maka : F(x) = F(b) – F(a)

  7. Contoh soal 1 Selesaikan integral : Penyelesaian = + C = + C

  8. Contoh soal 2 Selesaikan integral : Penyelesaian = = = () – 0 = 27 + 18 + 6 = 51

  9. PENERAPAN INTEGRAL Dalam bidang ekonomi, Integral tak tentu dapat dipergunakan di antaranya untuk mencari persamaan fungsi total, sedangkan Integral tertentu diantaranya digunakan untuk mencari Surplus Konsumen dan Surplus Produsen

  10. FUNGSI TOTAL Jika yang diketahui adalah persamaan fungsi total, maka untuk mengetahui persamaan fungsi marginal digunakan perhitungan diferensial. Sebaliknya, jika yang diketahui adalah persamaan fungsi marginal, maka mencari persamaan fungsi totalnya dipergunakan hitungan Integral.

  11. MISALNYA : • Fungsi Total Revenue (TR) dapat diperoleh dengan cara mengintegralkan fungsi marginal revenuenya : TR = • Fungsi Total Cost (TC) dapat diperoleh dengan cara mengintegralkan fungsi marginal Costnya : TC = • Fungsi Total Utility (TU) dapat diperoleh dengan cara mengintergralkan fungsi marginal utilitynya : TU =

  12. Contoh soal 1 : Carilah Fungsi Total Revenue sebesar MR = , Jika berproduksi pada Q = 25

  13. Solusi TR = MakaTR = Misal : u = 14 + 2Q maka du = 2 dQ dQ = Sehingga : = = = Lanjutannya …

  14. Solusi = = = = = TR = = = Jadi total revenuenya pada Q = 25 diperolehsebesar

  15. Contoh soal 2 : Carilah Fungsi Total Cost sebesar MC = , Jika berproduksi pada Q = 10

  16. Solusi TR = MakaTR = Misal : u = makadu = dQ dQ = Sehingga : = … Lanjutannya …

  17. SURPLUS KONSUMEN Yaitu : Keuntungan lebih (surplus) yang dinikmati oleh konsumen karena konsumen tersebut dapat membeli barang dengan harga pasar yang lebih murah daripada harga yang sanggup dibayarnya. (Kesanggupan bayar > harga).

  18. Jika permintaan suatu barang dinyatakan dengan persamaan P= f (Qd)dan ternyata bahwa harga barang tersebutdipasar sebesar Pe, maka bagi setiap konsumen yang pada dasarnya memiliki keinginan untuk membeli barang tersebut dan memiliki kesanggupan untuk membeli barang tersebut walaupun harganya diatas Pe dinyatakan bahwa konsumen tersebut mengalami keuntungan.

  19. Bpk Alfreed Marshall menyebutnya surplus konsumen. Surplus konsumen tersebut dapat dihitung dengan menggambarkan fungsi permintaanya serta menghitung luas area di bawah kurva yang bersangkutan tetapi di atas harga pasar Pe.

  20. P Gambar P` Surplus Konsumen (SK) Pe Q 0 Qe Q` Surplus konsumen = Luas daerah yang diarsir dihitung dengan rumus : SK = atau SK =

  21. Contoh soal : Diberikan fungsi permintaan sebagai berikut : Qd = 75 – 3P2, gambarkan fungsi tersebut pada sebuah grafik Qd vs Psertacarilah surplus konsumenya jika harga pasar Pe = 2

  22. Solusi Qd = 75 – 3P2 Qe = 75 – 3.(22) Qe = 75 – 3.4 Qe = 75 – 12 Qe = 63 Jadi (Pe,Qe) = (2,63) Fungsi Qd = 75 – 3P2 merupakan kurva parabola yang terbuka di bawah dengan titik puncaknya (P,Qd) = (0,75). Lanjutannya …

  23. Qd Gambar 75 63 Surplus Konsumen (SK) P 0 5 2 Surplus konsumen = Luas daerah yang diarsir SK = atau SK =

  24. Solusi SK = = = 75P - = (75.5 - ) - (75.2 - ) = (375 – 125) – (150 – 8) = 250 – 142 = 108

  25. ContohSoal 2: Fungsipermintaandanpenawaransuatubarangasing-masingditunjukkandenganfungsisebagaiberikut : Qd = 30 – 2P dan Qs = -6 + P. Hitunglah surplus konsumennya

  26. Solusi Mencari harga dipasar dengan cara : Qd = Qs 30 – 2P = – 6 +P 30 + 6 = P + 2P 36 = 3P maka Pe=12, dan Qe = –6 + 12 Qe = 6 Lanjutannya …

  27. Solusi Fungsi penawaran : Qs = – 6 + P Qs + 6 = P P = Qs + 6 Fungsi permintaan Qd = 30 – 2P 2p = 30 – Qd P = 15 – ½ Qd Lanjutannya …

  28. Gambar P Surplus konsumen P`= 15 P = Qs + 6 atau Qs = – 6 + P Pe = 12 Surplus Produsen P = 15 – ½ Qd atau Qd = 30 – 2P P``= 6 Q 0 Qe = 6 30 Surplus konsumen SK =

  29. Solusi SK = = 15Q - - (72) = = (90 – 9) – (72) = 81 – 72 = 9 Lanjutannya …

  30. Solusi Atau SK = = … Lanjutannya …

  31. SURPLUS PRODUSEN Yaitu : Keuntungan lebih (surplus)yang dinikmati oleh produsen karena produsen tersebut dapat menjual barang dengan harga lebih tinggi daripada harga yang sanggup dijualnya. (Kesanggupan menjual < harga pasar)

  32. Jika fungsi penawaran suatu barang dinyatakan dengan persamaan P = f(Qs) dan ternyata bahwa harga barang tersebut dipasar sebesar Pe, maka bagi setiap produsen yang pada dasarnya ingin menawarkan barang tersebut serta memiliki kesanggupan untuk menjual barang tersebut di atas harga pasar Pe dinyatakan bahwa produsen tersebut mengalami keuntungan.

  33. Bapak Alfred Marshall menyebutnya surplus produsen. Surplus produsen tersebut dapat dihitung dengan menggambarkan fungsi penawaranya serta menghitung luas area diatas kurva yang bersangkutan tetapi di atas harga pasar Pe

  34. P Gambar Pe E(Qe,Pe) Surplus Produsen P` Q 0 Qe Surplus produsen = Luas daerah yang diarsir dihitung dengan rumus : SP = atau SP =

  35. ContohSoal 1: Diberikan fungsi penawaran sebagai berikut : P = 20 + 5Qs, gambarkan fungsi tersebut pada sebuah grafik P vs Q, sertacarilah surplus produsenya untuk harga pasar sebesar 40.

  36. Solusi Fungsi penawaranya P = 20 +5Qs⇔ P – 20 = 5Qs 5Qs = P – 20⇔ Qs = P – Qs = P –4 Diketahui bahwa harga keseimbangan pasar adalah 40, maka untuk Pe = 40adalah Qe = P –4 ⇔Qe = –4 Qe = 8 – 4⇔ Qe = 4 Jadi (Pe,Qe) = (40,4) Lanjutannya …

  37. P Pe = 20 – 5Qs Gambar Pe = 40 Surplus Produsen P = 20 0 Qs 4 Surplus produsen = Luas daerah yang diarsir SP = atau SP =

  38. Solusi SP = = = = (160) - = (160) - = 160 – 120 = 40 Lanjutannya …

  39. Solusi Atau SP = = - 4P = = = 0 – (-40) = 40 Lanjutannya …

  40. ContohSoal 2: Fungsipermintaandanpenawaransuatubarangasing-masingditunjukkandenganfungsisebagaiberikut : Qd = 30 – 2P dan Qs = -6 + P. Hitunglah surplus produsennya

  41. Solusi SP = = = (72) - = (72) - = 72 – (54) = 18 Lanjutannya …

  42. Solusi Atau SP = = …

  43. TerimaKasihSemogasedikit yang AndaperolehdarisayasangatbermanfaatuntukAndasemua. Amin.

More Related