1 / 17

Automaten & Sprache

Eine Präsentation von Lena Sauter & Corinna Nawatzky. Automaten & Sprache. Gliederung. Endlicher Automat mit Ausgabe ( Mealy ) Funktionsweise Grundbegriffe Akzeptoren: Endliche Automaten ohne Ausgabe Funktionsweise Grundbegriffe Eingabealphabet Zustandsmenge Überführungsfunktion

mio
Download Presentation

Automaten & Sprache

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Eine Präsentation von Lena Sauter & Corinna Nawatzky Automaten & Sprache

  2. Gliederung • Endlicher Automat mit Ausgabe (Mealy) • Funktionsweise • Grundbegriffe • Akzeptoren: Endliche Automaten ohne Ausgabe • Funktionsweise • Grundbegriffe • Eingabealphabet • Zustandsmenge • Überführungsfunktion • Anfangszustand • Endzustand • Arbeitsweise • Arbeitsweise am Beispiel des Vierertesters • Sprache des Akzeptors • Quellen

  3. Endlicher Automat mit Ausgabe(Mealy)

  4. Funktionsweise

  5. Grundbegriffe • EA=(X,Y,Z,λ,δ,Z0)

  6. Akzeptoren:Endliche Automaten ohne Ausgabe

  7. Funktionsweise

  8. Grundbegriffe

  9. Eingabealphabet (X) • Nichtleere, endliche Menge • Menge aller Terminalsymbole Beispiel X= {!; -; .; _; @; a; b; …;z; 0; 1; …; 9}

  10. Zustandsmenge (Z) • Nichtleere, endliche Menge • Menge der vorhandenen Zustände • z0∈ Z  wird mitgezählt!!! Beispiel Z= { z1;z2;z3;…;z10} Symbol für einen Zustand: z1

  11. Übergangsfunktion (δ) • Zustand  Eingabe  Überführung  Neuzustand Beispiel z2 z3 @

  12. Startzustand (z0; S) • z0∈ Z • Start bei Zustandsdiagramm Beispiel S=z1 Start z1 z1

  13. Endzustand (zE; E) • zE⊆ Z (⊆  Teilmenge) • Doppelte Umrandung Beispiel E={z8;z9,z10} z9

  14. Arbeitsweise • Zustandsangabe nach Bearbeitung des Eingabewortes • Endzustand = True (Signallampe) • Anderer Zustand = False

  15. Arbeitsweise am Beispiel des Vierertesters (durch 4 teilbare Dualzahlen) Ergebnis: …00 Richtig: 101100 1000 11000 Falsch: 0 101 111001

  16. Sprache des Akzeptors L(A) • Menge aller akzeptierten Wörter über Eingabealphabet X L(A)={w| w ∈ X* und δ*(w, z0) ∈ zE} L(A) - Language/Sprache des Automaten A{} - Menge w: Eingabewort/ Wörter δ*: Folge von Zustandsübergängen (Beginn z0 mit w  Überführung in zE )

  17. Quellen • Gasper, Leiß, Spengler, Stimm: Technische und Theoretische Informatik. Bayerischer Schulbuch-Verlag. München, 1992 Kapitel 8.5 – 8.7 ohne Seite 137 und 8.8/ 11,12, 13c-g [31.01.2012, 13:01 Uhr] • Brichzin, Freiberger, Reinold, Wiedemann: Informatik Oberstufe 2 Maschinenkommunikation- Theoretische Informatik. Oldenbourg-Verlag, München, 2010 Kapitel 3 Seite 33-37 oben, Übungen S. 41ff. 1-4, 6, 12 [31.01.2012, 13:01 Uhr] • Hempel, T. (2008): Akzeptoren. URL: http://www.tinohempel.de/info/info/ti/akzeptor.htm[31.01.2012, 13:01 Uhr] • Hielscher, M. (2008). AToCC- AutoEdit. URL: http://www.atocc.de [31.01.2012, 13:01 Uhr] • http://www.colourbox.de/preview/1980238-663930-.jpg [26.02.2014, 16:33 Uhr]

More Related