1 / 45

Análise Estática de Mecanismos

Análise Estática de Mecanismos. Introdução. Finalidade das máquinas Aplicar força mecânica Operar energia e potência Realização de trabalho útil Aplicação e transmissão de força Geração de movimento conforme desejado Foco da aplicação Definição do principal objetivo Movimento

nira
Download Presentation

Análise Estática de Mecanismos

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Análise Estática de Mecanismos

  2. Introdução • Finalidade das máquinas • Aplicar força mecânica • Operar energia e potência • Realização de trabalho útil • Aplicação e transmissão de força • Geração de movimento conforme desejado • Foco da aplicação • Definição do principal objetivo • Movimento • Aplicação da força • Controle • Ampliação • Redução

  3. Mecanismos estáticos • Operam com baixas velocidades: • Pinças • Garras • Tesouras • Guindastes • Efeitos dinâmicos podem ser desconsiderados • Aplicação prática • Grande número de componentes • Geometria complexa • Base da análise estática => Terceira lei de Newton • Considerações • Projeto real de máquinas • Conhecimento dos esforços • Conhecimento da geometria • Cálculo das tensões e deformações • Seleção do material

  4. Representação Vetorial de Forças e Momentos

  5. Definição do Equilíbrio Estático • Segunda Lei de Newton • Se o corpo estiver parado ou em MRU • Resultante das forças atuantes é nula • O momento resultante em relação a qualquer ponto é nulo • Aplicação do conceito a todas as peças • Aplicação do conceito ao conjunto • Solução algébrica dos sistema de equações Equilíbrio Estático

  6. Digramas de Corpo Livre • Etapas da análise estática • Construção dos diagramas de corpo livre • Representação de todas as peças • Representação de todos os esforços • Forças e momentos externos • Ações e reações exercidas e aplicadas pelas demais partes • Consideração de todos os esforços relevantes • Omissões levam a erros • Esforços transmitidos através de juntas ideais • Ausência de atrito • Esforços relacionados com os movimentos permitidos • Trabalho realizado pelas forças nas direções dos movimentos permitidos é nulo – Princípio do trabalho virtual (Deslocamento na direção da força transmitida é nulo)

  7. Junta de revolução • Permite rotação em torno de seu eixo • Forças transmitidas • Contidas no plano do movimento • Cruzando o eixo da junta • Não realizam trabalho • Aparecem como pares de ação e reação entre as partes

  8. Junta prismática • Permite movimento linear em uma direção • Forças transmitidas • Forças normais à direção ao longo da qual ocorre o movimento • Momento normal ao eixo do movimento • Não realizam trabalho • Aparecem como pares de ação e reação entre as partes

  9. Junta de contato com rolamento puro • Similar a uma junta de revolução • Permite apenas o rolamento puro em relação ao ponto de contato • O ponto de contato se desloca ao longo da superfícies dos corpos • Forças transmitidas • Forças normais à direção do contato • Forças tangenciais ao contato • Não realizam trabalho • Aparecem como pares de ação e reação entre as partes

  10. Junta de contato com rolamento e deslizamento • Movimentos permitidos • Rotação em torno da direção normal ao contato • Deslizamento na direção tangente ao ponto de contato • Força transmitida => Na ausência de atrito • Ao longo da normal ao contato • Não realizam trabalho • Aparecem como pares de ação e reação entre as partes

  11. Análise Gráfica de Forças • Características • Baseado em desenho e geometria • Resultado depende da qualidade da construção • Vantagens • Fácil aplicação quando são poucas as posições de interesse de análise • Permite avaliar a influência do posicionamento das juntas nos esforços transmitidos • Desvantagens • Ineficiente para análise de ciclo completo • Não recomendado para aplicações de precisão • Estratégia de Implementação • Equilíbrio estático • Equilíbrio de forças => Traçado de um polígono fechado • Equilíbrio de momentos • Cálculo em separado • Medição das distâncias

  12. Análise Gráfica de Forças • Estratégia de Implementação • Condições para o eq. estático • Caso especial de duas forças • Forças iguais e opostas • Forças colineares • Caso especial de 3 forças • 2 forças não paralelas • Cruzamento das linhas de ação • Momento em relação a este ponto é nulo • Inclusão da terceira força • Momento = magnitude x distância normal • Momento nulo • Equilíbrio estático • Linhas de ação das 3 forças se cruzam em um único ponto

  13. Problema • Desenhar o diagrama de corpo livre de todas as peças • Análise posterior => Relacionar a força FH exercida pelo usuário com a força de retenção da peça FG • Considerar o mecanismo plano e na horizontal => Não atua carregamento gravitacional • OBS: Diagrama de corpo livre global => Equilíbrio estático do conjunto

  14. Diagrama de Corpo Livre

  15. Problema • Encontrar a força de retenção da peça FG • A força exercida pelo usuário FH é de 25 lb aplicada a 5 ¼” do ponto A • A força da mola FS vale 10 lb • Encontrar também as forças transmitidas nas juntas de revolução nos pontos A, B e C.

  16. Análise Gráfica de Forças • Procedimento • Força com direção conhecida • Força desconhecida => Módulo e direção • Busca por peça com 3 incógnitas e 1 força conhecida => Equações de equilíbrio

  17. Análise Gráfica de Forças • Procedimento • Escolha da peça 3 • FH conhecido • Duas componentes de F23 e módulo de F43 desconhecidos

  18. Análise Gráfica de Forças • Procedimento • Peça 3 => Sistema de 3 forças e nenhum momento aplicado • Linha de ação das forças deve se cruzar • Equilíbrio de forças obtido pela sua soma vetorial

  19. Análise Gráfica de Forças

  20. Análise Gráfica de Forças • Procedimento • Peça 2 => 3 incógnitas => Módulo de F52 e componentes de F12 • Soma de FS e F32 conhecidas => Força e momentos => F32 >>>>> FS • Sistema de 3 forças => Cruzamento em N Fs é a força feita pela mola e portanto se conhece sua linha de ação e o seu módulo.

  21. Análise Gráfica de Forças • Procedimento • Solução para as peças 1 e 5 => 2 Forças • Amplificação da força => FH = 25 lb => F15 = 489 lb => Ampliação de 19,6 vezes

  22. Método Analítico para a Análise de Forças • Características • Baseado na aplicação das equações de equilíbrio • Equilíbrio estático • Aplicação ao conjunto do mecanismo • Aplicação a cada um de seus componentes • Aplicação • Consideração das forças internas e externas • Traçado de todos os diagramas de corpo livre • Análise geométrica das posições envolvidas • Montagem das equações de equilíbrio de força e momento

  23. Problema • Encontrar o momento T12 necessário para manter o mecanismo abaixo em equilíbrio sabendo que a força P = 120 lb e que a barra 2 está posicionada segundo um ângulo de 135º em relação à horizontal. • AB = 6 in BC = 18 in EC = 12 in ED = 5 in AE = 8 in

  24. Método Analítico

  25. Método Analítico

  26. Método Analítico

  27. Método Analítico

  28. Considerações a Respeito do Atrito • Características • Pode reduzir a eficiência do funcionamento • Aumenta o consumo de energia / potência • Dissipação de energia em calor • Aquecimento • Degradação dos materiais • Desgaste • Aplicação => Perpendicular à força de contato • Atrito de Coulomb • Limite de atrito estático proporcional à força normal no contato • Direção dada pela direção do movimento ou sua tendência • Análise prévia de velocidades • Atrito viscoso => Depende da velocidade

  29. Atrito em Cames • Considerações • Força de contato possui 2 componentes: Normal e tangencial ao contato • Componente tangencial => Força de atrito => Relacionada à força normal • Limite -> F32t= m F32n

  30. Atrito em Cames • Considerações • Atrito independe da área • m independe de Fn • Coeficiente estático e dinâmico • Se estático => 0 =< m=>mS • Atrito dinâmico independe da velocidade

  31. Atrito em Juntas de Revolução • Muito importante quando o ângulo de transmissão é pequeno • Aparece no ponto de contato entre o pino e o mancal • Resulta em um torque de atrito • Figura: • Folga exagerada • Raio do pino R • Coeficiente de atrito m

  32. Atrito em Juntas de Revolução • Força de atrito => F42t = m F42n • Ângulo de atrito => Tan f = m F42n / F42n => Tan f = m => f = Tan-1(m) • Torque de atrito => TF = m F42n R • Força total no contato F42 => Tangente ao círculo de atrito • Raio do círculo de atrito => RF = R Sen (f)

  33. Atrito em Juntas de Revolução • Circulo de atrito em cada articulação • Aplicação da força de atrito • Sentido de opor resistência ao movimento relativo • Altera a linha de ação das forças • Não passa pela linha de centro das articulações => 4 possibilidades • Necessita conhecer a direção das forças • Necessita conhecer o sentido da tendência ao movimento relativo

  34. Análise • Baseado no mecanismo articulado da figura determine o torque T12 necessário ao equilíbrio estático do conjunto conhecendo a força externa aplicada à peça 4 (P = 200 lb), o ângulo q2 = 120º , o coeficiente de atrito estático m = 0,20 e o diâmetro do pino de cada articulação como sendo 2 in. Determine o torque com e sem considerar o atrito. Considere que a tendência ao movimento da peça 2 é girar no sentido anti-horário.

  35. Análise q2 está crescendo q3 está diminuindo q4 está diminuindo Verificar se os ângulos estão aumentando ou diminuindo de acordo com a tendência de movimento

  36. Análise sem Atrito

  37. Análise sem Atrito O ponto de atuação das forças na barra 4 é o ponto C. O triângulo de forças permite calcular o valor de F34

  38. Análise sem Atrito A barra 3 somente pode transmitir forças que são colineares com sua linha de simetria. Segmento BC.

  39. Analise sem Atrito

  40. Análise sem Atrito

  41. Análise sem Atrito A força F12 possui sentido oposto à F32 e mesmo módulo. O torque é calculado considerando-se o comprimento h.

  42. Análise com Atrito • = 0,2 • = Tan-1(m) • = Tan-1(0,2) • = 11,3º RF = R Sen(f) RF = 1 Sen(11,3º) RF = 0,20 in

  43. Análise com Atrito F43 é uma força que traciona a barra 3. A barra 3 gira em relação ao ponto C no bloco 4 no sentido anti horário => F43 gera torque oposto à tendência de movimento Analogamente pode-se localizar F23 e as outras forças.

  44. Análise com Atrito A peça 4 é um elemento de 3 forças, sendo a direção de F14 dada pelo ângulo de atrito f. O triângulo de forças na peça 4 permite calcular a força F34. A partir de F34 obtém-se F43, F23 e F32 A partir de F32 determina-se F12 e pelo equilíbrio de momento em torno de A determina-se T12 => Torque de equilíbrio 28% maior que no caso sem atrito

More Related