1 / 16

The Ideal Op-amp

v +. V OUT. v –. +15V. +. +. –15V. –. –. +. –. The Ideal Op-amp. (Operational amplifier). saturation. V IN. V OUT. V OUT [V]. V OUT =A(v + –v – ). V IN [ μ V]. A~10 5. v +. v –. v +. V IN. V OUT. v –. R 1. R 2. Non-Inverting Amplifier Circuit. +. +. –. –. V OUT.

orly
Download Presentation

The Ideal Op-amp

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. v+ VOUT v– +15V + + –15V – – + – The Ideal Op-amp (Operational amplifier) saturation VIN VOUT VOUT [V] VOUT=A(v+–v–) VIN [μV] A~105

  2. v+ v– v+ VIN VOUT v– R1 R2 Non-Inverting Amplifier Circuit + + – – VOUT Op-amp Feedback

  3. v+ v– v+ VIN VOUT v– R1 R2 Non-Inverting Amplifier Circuit + + – – Op-amp Feedback Assumptions: Gain is very large (A) Inputs draw no current (ZIN=) Output attempts to make input voltage difference zero (v+=v–)

  4. Inverting Amplifier Circuit R2 i R1 v– VIN – i VOUT v+ + R1 R1 R1 V1 V3 V2 R2 i v– – VOUT Summing amplifier v+ +

  5. R1 R2 R3 V1 V2 V3 RF i v– – VOUT v+ +

  6. Difference amplifier R2 R1 v– V1 – VOUT v+ R1 + V2 R2

  7. Integrator VOUT VIN Capacitor as integrator R Vi Vint C If RC>>t VC<<Vi

  8. i v– – i v+ Op-amp Integrator C R VIN VOUT +

  9. Differentiation C Vi Vdiff R Small RC 

  10. i v– – i v+ Op-amp Differentiator VOUT VIN R C VIN VOUT +

  11. Complex analysis R2 i C R1 v– – i VOUT v+ V0ejωt + High pass filter

  12. v+ VOUT v– + – Exploiting op-amp saturation Saturation voltage VOUT = A(v+–v–) A VOUT = +VSat v+>v– VOUT = –VSat v+<v–

  13. + – Bridge circuits Z1 Z3 VA VB V0 VOUT Z4 Z2 Bridge balanced when VAVB=0

  14. + + + + – – – – Analogue – digital conversion (ADC) V0 R R VIN R R

  15. R VOUT  + C R1 R1 Oscillator

  16. Op-amp applications Building block of analogue electronics Signal amplifiers Audio amplifiers Integrators / differentiators Voltage / current sources Active filters Oscillators Digital-analogue and analogue-digital convertors

More Related