2.15k likes | 7.25k Views
Teoría de Conjuntos. Prof. Carlos Coronel R. Teoría de conjuntos. Conjuntos y Subconjuntos Operaciones entre conjuntos Unión Intersección Diferencia de conjuntos Complemento de un conjunto Diferencia Simétrica Leyes de la teoría de conjuntos Diagramas de Venn.
E N D
Teoría de Conjuntos Prof. Carlos Coronel R.
Teoría de conjuntos • Conjuntos y Subconjuntos • Operaciones entre conjuntos • Unión • Intersección • Diferencia de conjuntos • Complemento de un conjunto • Diferencia Simétrica • Leyes de la teoría de conjuntos • Diagramas de Venn
1. Conjuntos y subconjuntos Un conjunto es una colección o agrupación bien definida de objetos, los cuales presentan una propiedad en común. A estos objetos se llaman elementos y se dice que son miembros del conjunto. Sintaxis: A,B,C,.. Para representar los conjuntos (letras mayúsculas) w,x,y,… Para representar los elementos (letras minúsculas) Ejemplo: A es un conjunto formado por los diez primeros números enteros positivos. Se puede representar por extensión: A = {1,2,3,4,5,6,…10} O se puede representar por comprensión: A = {x / x es un entero y 1≤ x ≤ 10} / se lee “tal que” {x /….…} se lee “el conjunto de todos los x tal que …” 1 A 1 es un elemento del conjunto A -5 A -5 no es un elemento del conjunto A
Ejercicios Exprese los siguientes conjuntos por extensión y nombre de que tipo de conjunto se trata: A = {xx2 – 3x – 4= 0} Conjunto: _________ B = {x/x = 2n – 1 Λx > 17}Conjunto: _________ C = {x/x = 2n Λx < 38}Conjunto: _________ D = {x/x = 5n Λ -9 < x ≤ 15}Conjunto: _________ E = {x/8x = 27 – x}Conjunto: _________ F = {x/x IN, 11 < x < 12 }Conjunto: _________
Ejercicios Exprese los siguientes conjuntos por comprensión y nombre de que tipo de conjunto se trata: A = {1, 3, 5, 7, 9, …} Conjunto: _________ B = { Ω}Conjunto: _________ C = {1, 4, 9, 16, 25, …}Conjunto: _________ D = {do, re, mi, fa, sol, la, si }Conjunto: _________ E = {a, e, i, o, u}Conjunto: _________ F = { }Conjunto: _________
Conjuntos finitos Conjunto infinito Al trabajar con conjuntos finitos o infinitos, se deben describir los conjuntos en términos de las propiedades que deben satisfacer sus elementos. Ejemplos: Si U= {1,2,3,4,5,…} el conjunto de los números enteros positivos, sean: A = {1,4,9,…,64,81} = { x2 / x U, x2 < 100} = { x2 / x U Λx2 < 100} = { x U / x2 < 100} B = {1,4,9,16} = { y2 / y U, y2 < 20} = { y2 / y U Λy2 < 23} = { y U / y2≤16} C = {2,4,6,8,…} = {2k / k U }
Conjunto universal Un conjunto se llama conjunto universal siincluyetodos los conjuntos en discusion, y se denotapor la letra U. Conjunto Vacío Es un conjunto que carece de elementos. Se llama conjunto vacío, y se representa por Ф o { }. Observe que |Ф| = 0 pero { 0 } Ф, así mismo { Ф } Ф Ejemplo: Si C = { x / x3 = 8 y x es impar } entonces C = { } V C = Ф Nota : El conjunto vacío está incluido en todo conjunto.
Cardinal de un Conjunto: Es el número de elementos de dicho conjunto. |A| = 9 Λ|B| = 4 Definición de Subconjunto: Si C, D son conjuntos del universo U, decimos que C es un subconjunto de D y se escribe : C D si cada elemento de C es un elemento de D. C D D C Si además , D contiene un elemento que no esta en C , entonces C es un subconjunto propio de D y se escribe como: C D.
{1} A • {{1}, 2} A • {{1}} A • 2 A • {2, 3} A • 1 A No hay restricciones en cuanto a los objetosquepueden ser miembros de un conjunto. Ejemplos: 1) S = {a, {1, 2}, p, {q}} {q} S el conjunto {q} es miembro de S q {q} el elemento q es miembro del conjunto {q} q S el elemento q no es miembro de S 2) Si A = {{1}, 2, 3}; entonces se cumple:
ConjuntosIguales Dos conjuntos A y B son iguales; si y solo si, A B y B A A = B (A B) (B A) A = B x {x/ x A x B} Ejemplos: • {1, 2, 4} = {1, 2, 2, 4} • {1, 4, 2} = {1, 2, 4} • Si P = {{1,2}, 4} y Q = {1, 2, 4}; entonces: P Q • {{1}} {1} • Si U = {1,2,3,4,5}, A = {1,2} y B = {x/x2 U }= {1,2}, entonces A = B
Familia de conjuntos Para un conjunto A cualquiera, a la colección o familia de todos los subconjuntos de A se le llama conjunto potencia de A y se denota por (A). Ejemplos: 1) Si M = { 1, 2 } entonces: | M | = 2 ; es decir: M tiene 2 elementos . Luego: (M) = { {1}, {2}, M, Ф}, Se verifica lo siguiente: |(M)|= 2|M|→ 22 = 4 posibles subconjuntos de M 2) Si N = { 1, 2, 3 } → El conjunto M tiene 3 elementos |(N)|= 23 ; hay 8 posibles subconjuntos de N. Luego: (N) = { {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, N,Ф}
Ejercicios Determine el conjunto potencia de los siguientes conjuntos : P = { Ω, 5 } Q = { 0, {1,2 } , ∆ } R = { x Z / 3 < x < 5 }
Diagrama de Venn Los diagramas de Venn permiten visualizar gráficamente las nociones de conjuntos y se representan mediante círculos inscritos en un rectángulo. Los círculos corresponden a los conjuntos dados y el rectángulo al conjunto Universal.
Operaciones de Conjuntos y las leyes de la Teoría de Conjuntos
A B A B A B A U B A U B A U B Unión de conjuntos La unión de dos conjuntos A y B, que se denota como A B, es el conjunto de todos los elementos que pertenecen al conjunto A o al conjunto B o a ambos. A B = {x / (x A) (x B) } De igual forma: A B C = {x / (x A) (x B) (x C)} Nota:La unión de dos conjuntos es conmutativa, asociativa y reflexiva.
Ejemplo: • Dados los conjuntos: A = { 0, 1, 2, 3, 4, 5 },B = { 0, 2, 4 } • y C = { 5, 6, 8 }, efectuar y construir los diagramas de Venn respectivos: • A U C = { 0, 1, 2, 3, 4,5, 6, 8 } • B U C = {0,2,4,5,6,8} • A U B = {0,1,2,3,4,5}
Intersección de conjuntos La intersección de dos conjuntos A y B, se denotacomoA B, y es el conjunto de todos los elementosqueestancontenidostanto en A como en B. A B = {x / (x A) (x B)} Propiedades: A B = B A A A = A A Ф = Ф Nota: La intersección en conjuntosesasociativa y conmutativa.
Diferencia: Para A, B U, la diferencia de de A en B, se denota por : A - B = {x / x A x B } Y la diferencia de B en A, se denota por : B - A = {x / x B x A} ¿Dibujo? Nota: A – B ≠B – A
Complemento: Para un conjunto A U, el complemento de A se denota por: U - A V A’ VA : A’ = { x / x U x A}
Diferencia simétrica: La diferencia simétrica de A y B se denota como : A B = {x / (x A x B) x A B} A B= {x / (x A B) x A B}
Ejercicios: Si: U = {1,2,3,…,9,10}, A = {1,2,3,4,5}, B ={3,4,5,6,7} y C = {7,8,9} , calcular las siguientes operaciones: A B = B C = A B = A C = A B = A C = A C = B’ = A – B = B – C = (A B)’ =
Ejercicios: Si U = {1,2,3,…,9,10, 11, 12 }, A = {1,2,3,4,5}, B ={1, 3, 5, 7} y C = {6,8,10} , calcular las siguientes operaciones: A – (C B) = B’ = (A C) – B = (B – A) C = (C – A) B = (A – B) (B – A) = (A B C) = A’ C’ = U – A =