1 / 53

Mathematische Beschreibungen des menschlichen Lebens

Mathematische Beschreibungen des menschlichen Lebens. Warum Mathematik + Mensch ? . Im 19. und frühen 20. Jahrhundert passierten enorme Fortschritte im Verständnis der Physik (Naturwissenschaft) – durch verstärkte Mathematisierung

palma
Download Presentation

Mathematische Beschreibungen des menschlichen Lebens

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Mathematische Beschreibungen des menschlichen Lebens

  2. Mathematik + Mensch Warum Mathematik + Mensch ? • Im 19. und frühen 20. Jahrhundert passierten enorme Fortschritte im Verständnis der Physik (Naturwissenschaft) – durch verstärkte Mathematisierung • Im 20. und frühen 21. Jahrhundert passiert technischer Fortschritt und wachsender Lebensstandard - durch mathematische Modellierung und Simulation • Im 21. Jahrhundert stellt sich die nächste Herausforderung • - Mathematische Beschreibungen menschlichen Lebens

  3. Mathematik + Mensch Menschliches Leben auf allen Skalen • Mathematische Probleme stellen sich auf allen Skalen: • Molekulare / Subzellulare Prozesse • Physiologie / Zellulare Prozesse • Zellbewegung und -populationen • Prozesse auf Organebene • Untersuchungen auf Ganzkörperebene • Prozesse mit grosser Anzahl von Menschen(massen) • "Mathematics compares the most diverse phenomena and discovers the secret analogies that unite them." Jean Baptiste Joseph Fourier

  4. Mathematik + Mensch Beispiele aus meiner Forschung • Simulation von Ionenkanälen • Simulation von Zellbewegung • Molekulare Bildgebung • Bildgebung auf grösseren Skalen • Simulation sozio-ökonomischer Prozesse • "Mathematics creates our standard of living." Bob Eisenberg • " Sozialkompetenz ist auch in der Mathematik eine ganz wichtige Eigenschaft." Wolfgang Lück (FOCUS, Jan 08)

  5. Mathematik + Mensch Mathematical Imaging@WWU Christoph Brune Marzena Franek Alex Sawatzky Frank Wübbeling Thomas Kösters Christina Stöcker Claudia Giesbert Astrid Heitmann Mary Wolfram (Linz) Martin Benning Thomas Grosser

  6. Mathematik + Mensch Diplomanden 07/08 Tanja Mues Katharina Daniel Anna Weisweiler Melanie Schröter Bärbel Schlake Jahn Müller Martin Benning Steffi Sillekens Oleg Reichmann Arvind Sarin Tobias Neugebauer Matthias Tillmann Jan Pietschmann Jan Hegemann Michael Möller (Cambridge) (UCLA) (UCLA)

  7. Mathematik + Mensch Bildrekonstruktion und inverse Probleme • Inverse Probleme bestehen in der Rekonstruktion einer Ursache aus einer beobachteten Wirkung (über ein mathematisches Modell, das sie in Beziehung setzt) • Prototyp inverser Probleme: Medizinische Diagnose • Nicht-invasive Verfahren in der Medizin basieren immer auf indirekter Beobachtung • "The grand thing is to be able to reason backwards." Arthur Conan Doyle (A study in scarlet)

  8. Mathematik + Mensch Molekulare Bildgebung: PET • Bildgebung auf molekularer Ebene, funktional und quantitativ • Beispiel Positron-Emission-Tomography • Externe Messung basierend aufradioaktiven Zerfallsdaten • Zerfallsevents zufällig, aber Rate proportional zur Dichte

  9. Mathematik + Mensch EM-Algorithmus • Stochastische Modellierung des Problems, Messungen aus Poisson-Modell • Bild u ist Dichtefunktion des Tracers • Linearer Operator K entspricht Radon-Transformation • Eventuell zu korrigierende Störungen / Messfehler b • Johann Radon

  10. Mathematik + Mensch EM-Algorithmus • Rekonstruktion als maximum-likelihood Schätzer • Modellierung der a-posteriori Wahrscheinlichkeit nach Bayes

  11. Mathematik + Mensch EM-Algorithmus als Fixpunktiteration • Kontinuierlicher Grenzwert für grosse Anzahl von Events(Stirling-Formel)Optimalitätsbedingung führt auf Fixpunktgleichung

  12. Mathematik + Mensch PET Rekonstruktion • Rekonstruktion bei guter Statistik (Kleintier PET)Thomas KöstersFrank Wübbeling

  13. Mathematik + Mensch EM-Algorithmus an der Grenze • Schlechtere Statistik = weniger Radioaktivität / schneller zerfallende Isotope Für Patienten verträglich/ für gewisse Untersuchungen besserAlex Sawatzky Thomas Kösters ~10.000 Events ~600 Events

  14. Mathematik + Mensch Vom Bild zum Cartoon • Wie können wir auch im Fall schlechter Daten vernünftige Rekonstruktionen erhalten ? • Anforderungen müssen adaptiert werden • Suche Methode, die nicht alle detaillierten Muster zu rekonstruieren versucht, sondern sich auf die wesentliche Struktur konzentriert: Cartoon-Rekonstruktion

  15. Mathematik + Mensch Das Auge des Betrachters • Was sind vernünftig rekonstruierte Strukturen ? • Hauptanforderung: müssen für den (menschlichen) Betrachter sinnvolle Rückschlüsse zulassen • Übersetze Augenfunktion und Psyche in Mathematik • Scharfe Objektkanten sind viel wichtiger als Texturen • Morel et al, From Gestalt Theory to Image Analysis, Springer 2007Haddad-Meyer, UCLA CAM Report 2004

  16. Mathematik + Mensch Das Auge des Betrachters • Was sind vernünftig rekonstruierte Strukturen ? Was nimmt unser Auge /Hirn wahr ?

  17. Mathematik + Mensch Das Auge des Betrachters • Lokale Änderungen von Texturen ändern wenig

  18. Mathematik + Mensch Das Auge des Betrachters • Zusätzliche Strukturen ändern viel !

  19. Mathematik + Mensch TV-Methoden • Bestrafung der totalen VariationFormalExaktROF-Modell zum Entrauschen von g: minimiere totale Variation unter NebenbedingungRudin-Osher-Fatemi 89,92

  20. Mathematik + Mensch Warum TV-Methoden ? • Deswegen ! Linearer Filter TV-Methode

  21. ¸ Z ( ) ( ( ) ) J 2 ¡ ( j ) ( ( ) ) p u e x p u d » ¡ ¡ p g u e x p u g x » 2 Mathematik + Mensch TV-Methoden und Bayes • Es existiert ein Lagrange Parameter, sodass ROF äquivalent ist zu • Erster Term aus log-likelihood für Gauss-Verteilung, zweiter als a-priori Wahrscheinlichkeit !

  22. Mathematik + Mensch TV-Methoden und Geometrie • Verbindung zu Längen/Oberflächenminimierung durch coarea-Formel • Erster Term zerfällt in Volumsintegrale mit Gewichtung u-g • Lösung isoperimetrischer Probleme auf Level Sets ! Stan Osher

  23. ( ) k k ( ) ¸ d @ J i 0 1 · ¡ + 2 u p g v p q q p u = = 1 ; ; Mathematik + Mensch TV-Methoden und Geometrie • Optimalitätsbedingung • Duale Variable p hat geometrische Bedeutungq ist verallgemeinertes Normalenvektorfeld an Level Sets • p ist mittlere Krümmung

  24. Mathematik + Mensch TV-Methoden • Analysis und Numerik von TV-Minimierung ist schwierig: • nichtdifferenzierbar • nicht strikt konvex • degenerierter Differentialoperator • keine starke Konvergenz • unstetige Lösungen • potentiell grosse Datenmengen (3D / 4D Imaging)

  25. Mathematik + Mensch TV-Methoden • Fehlerabschätzungen brauchen eigenes Distanzmaß: • Verallgemeinerte Bregman-distancemb-Osher 04 • p muss bei Diskretisierung richtig behandelt werden (primal-duale Methoden) • mb 08 DFG-Projekt Regularisierung mit Singulären Energien, 2008-2011

  26. Mathematik + Mensch Effiziente Löser • Parallele Methoden basierend auf Gebietszerlegung – Minimierung auf Teilgebieten mit passender RandkopplungJahn Müller

  27. Mathematik + Mensch Allgemeinere Probleme • Durch Anpassung des Datenfit-Terms (Bayes) • Gauss‘sche Entzerrung statt Gauss‘scher Entrauschung • (Verzerrung modelliert durch linearen Integraloperator K ) • → • Poisson-Modell mit TV-Prior:

  28. Mathematik + Mensch Konstruktion numerischer Verfahren • Geeignete numerische Lösung durch 2-Schritt Verfahren • Klassischer EM-Teil im ersten SchrittTV-Minimierung im zweiten Schritt

  29. Mathematik + Mensch ~600 Events • Alex Sawatzky Thomas Kösters EM EM-TV

  30. Mathematik + Mensch EM-TV Rekonstruktion aus simulierten Daten • Bild Daten EM EM-TV

  31. Mathematik + Mensch Quantitative Verfahren • Verbleibendes Problem: systematischer Fehler der TV-Methode • Variation wird zu stark reduziert, quantitative Werte können vor allem bei kleinen Strukturen stark abweichen • Probleme bei quantitativen Verfahren, z.B. Auswertung von physiologischen Parametern basierend auf PET-RekonstruktionenProjekt PM 6 im SFB 656 (mb/Klaus Schäfers)

  32. ( ) ( ) @ C C t t x x T T ; ; ( ) ( ( ) ) F C t ¡ x = A V t D Mathematik + Mensch Rekonstruktion physiologischer Parameter • Myokardiales Blutfluss-Modell in jedem Pixel. • Vereinfachtes Modell: Bestimmung der Perfusion F und des arteriellen Blutfluss CA aus Bildintensität u berechnet aus CTNichtlineares inverses Problem • Martin Benning

  33. 1 ^ u 1 1 1 ( ) ( ( [ ) ( ) ( ( ) ( ) h ) i ] ) ^ ^ ^ J J J ¡ + ¡ + ¡ p u e x p p u u e x p u u p u u » » ; Mathematik + Mensch Quantitative Verfahren • Kontrastkorrektur durch iterative Regularisierung • Die prior probability zentriert bei null • Anpassung: sei das Minimum des Poisson-TV Modells Iterativer Algorithmus, EM-TV kann für jeden Schritt verwendet werden mb-Osher-Goldfarb-Xu-Yin 05, mb-Gilboa-Osher-Xu 06

  34. Mathematik + Mensch Nanoskopie – STED & 4Pi • Analoge Probleme in der optischen Nanoskopie: • Stimulated Emission Depletion (Stefan Hell, MPI Göttingen)BMBF Projekt „INVERS“, Göttingen(MPI+Univ)-Münster-Bochum-Bremen, Leica

  35. Mathematik + Mensch Nanoskopie – STED & 4Pi • Ähnliches Modell der Bildformation, K ist FaltungsoperatorVerwendet u.a. zum Studium menschlicher Zellen

  36. Mathematik + Mensch Nano-Dekan • Simulierte Bildformation→Christoph Brune

  37. Mathematik + Mensch Dekan-Cartoon • Iterierte EM-TV Rekonstruktion • Christoph Brune

  38. Mathematik + Mensch Nanoskopie an der Grenze: Syntaxin PC12, 53nm • Christoph Brune

  39. Mathematik + Mensch 3D Zellstruktur • Christoph Brune

  40. Mathematik + Mensch Mathematische Modelle: Kollektives Verhalten Mathematische Modelle lassen sich für verschiedenste Aspekte des menschlichen Lebens herleiten, zB • Transport durch Ionenkanäle • Zellbewegung und –aggregation (Chemotaxis) • Verhalten von Menschenmengen bei Evakuierung • Verhalten von Händlern auf Finanzmärkten • ….

  41. X N N N N ( ) ( ) d F X H X X t = N k j j j N N N N N N ; ( ) ( ) ( ) d d d d X X X F r V X W t t ¡ + ¾ = j j j j t k 6 j = Mathematik + Mensch Individuelle Modelle Mikroskopische Modelle (individual based) für den Zustand einzelner Teilchen (Position, Impuls) oder Menschen (Position, Meinung, …) können in Form stochastischer Differential-gleichungen gewonnen werden Interaktion der TeilchenBerechnung der Interaktionskräfte aus weiteren Gleichungen

  42. Chemist’s View All Atoms View Chemical Bonds are lines Surface is Electrical Potential Red is positive Blue is negative Mathematik + Mensch Ionenkanäle Transport durch Zellmembrane passiert durch IonenkanäleIonenkanäle sind Proteinemit einem Loch in der MitteProteine erzeugen effektiveLadung im KanalBob Eisenberg

  43. Mathematik + Mensch Ionenkanäle Zustand ist Position der einzelnen Ionen im Kanal und umliegenden FlüssigkeitenInteraktion über elektrische (Coulomb) und chemische Kräfte Externe Kräfte von Proteinen, analoge elektrische und chemische Kräfte

  44. Mathematik + Mensch Fussgängersimulation Beschrieben durch Newton‘sche Bewegungsgleichungen mit starker Dämpfung (hin zur typischen Gehgeschwindigkeit) „Soziale Kräfte“(Helbing 93): - Bevorzugte Geschwindigkeitsrichtung (zB zum Ausgang) • Externe abstossende Potentiale (Wände, Hindernisse) • Lokal abstossende Kraft zu anderen Fussgängern

  45. Mathematik + Mensch Fussgängersimulation Simulation der Entleerung eines Raumes mit zwei Türen und einem HindernisBärbel Schlake

  46. Mathematik + Mensch Finanzmärkte und Meinungsbildung Händlerverhalten nach ähnlichem Muster • Externe Potentiale: Wirtschaftsdaten, DAX, Zinsniveau, ... • Interaktion: Anpassung an / Abgrenzung von Konkurrenz • Bsp: Preisbildung, Volatilitätsmodelle, Einschätzungen des Wirtschaftsklimas, Verteilung von Wohlstand … Lux et al, Helbing et al, Toscani et al, Lasry-Lions, Bianchi-Capasso-Morale, …Daniela Morale Vincenzo Capasso

  47. Mathematik + Mensch PDE-Modelle Im Grenzwert einer grossen Anzahl von Inviduen Herleitung von Kontinuumsmodellen mit asymptotischen Methoden • Liouville (2Nd+1 Dimensionen)  • BBGKY-Hierarchie (2kd+1 Dimensionen) •  • Boltzmann/Vlasov Gleichungen (2d+1) •  • Mean-Field Fokker-Planck Gleichungen (d+1) • Ludwig Boltzmann

  48. Mathematik + Mensch Finanzmärkte und Meinungsbildung Analoge Modelle auch aus diskreten Sprungmodellen (random walks). Anwendung auf Finanzmarktdaten, Parameterschätzung Lux et al 05,07Random Walk / Markov Prozess •  • [Mastergleichung (hochdimensional)] •  • Mastergleichung (niedrigdimensional) •  • Fokker-Planck Gleichung • Katharina Daniel

  49. 0 ( ) E 0 ( ) ( ) f h l k l l E T i i ¹ ½ t + = ½ ½ n c o a e r e = ( ( ) ) @ r D r ¢ ½ ½ ¹ = t Mathematik + Mensch Nichtlineare Fokker-Planck Gleichungen Kanonische Form der Fokker-Planck Gleichung wobei für eine Entropie / Energie E • Degenerierte nichtlineare Diffusion, wenn D nicht strikt positiv ist und • Peter Markowich

  50. 1 Z Z ( ( ) ) ( ) ( ) @ r D V 0 1 2 2 ( ) ( ) j j ¢ ½ ½ d f d d ½ ½ ½ ½ D V i = = = 0 1 s ½ ½ : n ½ x s = ; 0 1 ; ( ) V @ r E ½ 0 ½ ½ ; = M t Mathematik + Mensch Nichtlineare Fokker-Planck Gleichungen Allgemeine Formulierung als metrischer GradientenflussBenötigen dafür Riemann‘sche Mannigfaltigkeit Metrik definiert über optimalen Transport Otto, Brenier, DeGiorgiAmbrosio-Gigli-Savare

More Related