510 likes | 522 Views
Explore the characteristics, history, diversity, and evolutionary trends of Kingdom Animalia, including information on body symmetry, embryological development, digestion, and phylogeny. Discover the diverse animal species, from sponges and cnidarians to lophotrochozoans and more.
E N D
V. Kingdom Animalia A. Introduction 1. Characteristics: Eukaryotic Multicellular Heterotrophic Lack cell walls.
V. Kingdom Animalia A. Introduction 1. Characteristics 2. History - first animals in fossil record date to 900 mya largely wormlike soft-bodied organisms
V. Kingdom Animalia A. Introduction 1. Characteristics 2. History - first animals in fossil record date to 900 mya largely wormlike soft-bodied organisms - in the Cambrian, 550 mya: – response to predators (Cnidarians) – radiation of major phyla organisms with hard parts
V. Kingdom Animalia A. Introduction 1. Characteristics 2. History 3. Diversity - Approximately 1 million described animal species. Of these: 5% have a backbone (vertebrates) ( a subphylum in the phylum Chordata) Pikaia - earliest Chordate
V. Kingdom Animalia A. Introduction 1. Characteristics 2. History 3. Diversity - 95% lack a backbone (invertebrates) (in 29 Phyla, including Chordata) - 85% are Arthropods
V. Kingdom Animalia A. Introduction 1. Characteristics 2. History 3. Diversity - most ‘types’ of animals (phyla) are invertebrate, marine orgs. - humans are not typical animals
V. Kingdom Animalia A. Introduction 1. Characteristics 2. History 3. Diversity 4. Evolutionary Trends
V. Kingdom Animalia A. Introduction 1. Characteristics 2. History 3. Diversity 4. Evolutionary Trends - Body Symmetry asymmetrical radially symmetrical bilaterally symmetrical
V. Kingdom Animalia A. Introduction 1. Characteristics 2. History 3. Diversity 4. Evolutionary Trends - Embryological development zygote – morula – blastula – gastrula – neurula
V. Kingdom Animalia A. Introduction 1. Characteristics 2. History 3. Diversity 4. Evolutionary Trends - “Cephalization” – evolving a head
V. Kingdom Animalia A. Introduction 1. Characteristics 2. History 3. Diversity 4. Evolutionary Trends - Digestion
V. Kingdom Animalia A. Introduction 1. Characteristics 2. History 3. Diversity 4. Evolutionary Trends - Digestion * intracellular to extracellular
V. Kingdom Animalia A. Introduction 1. Characteristics 2. History 3. Diversity 4. Evolutionary Trends - Digestion * intracellular to extracellular * “gut” to “tract”
V. Kingdom Animalia A. Introduction 1. Characteristics 2. History 3. Diversity 4. Evolutionary Trends 5. Phylogeny
II. Animal Diversity A. Sponges
II. Animal Diversity A. Sponges - asymmetrical
II. Animal Diversity A. Sponges - asymmetrical - loosely integrated cells (not true tissues)
II. Animal Diversity A. Sponges - asymmetrical - loosely integrated cells - cell types: choanocytes line cavity – absorb food epidermal cells on outer surface mesohyll – contains supporting soft spongin fibers and rigid, silicaceous spicules. Also, ameoboid cells that transfer food from choanocytes to outer cells.
II. Animal Diversity B. Cnidarians 1. Diversity - Hydras
II. Animal Diversity B. Cnidarians 1. Diversity - Hydras - Jellyfish
II. Animal Diversity B. Cnidarians 1. Diversity - Hydras - Jellyfish - Anemones
II. Animal Diversity B. Cnidarians 1. Diversity - Hydras - Jellyfish - Anemones - Corals
II. Animal Diversity B. Cnidarians 2. Body Plan diploblastic – two true tissue layers (ectoderm and endoderm)
II. Animal Diversity B. Cnidarians 2. Body Plan - diploblastic – two true tissue layers (ectoderm and endoderm) - gastrovascular cavity - ameoboid cells in mesoglia
II. Animal Diversity B. Cnidarians 2. Body Plan - diploblastic – two true tissue layers (ectoderm and endoderm) - gastrovascular cavity - ameoboid cells in mesoglea - cnidocytes with nematocysts
II. Animal Diversity B. Cnidarians 2. Body Plan - diploblastic – two true tissue layers (ectoderm and endoderm) - gastrovascular cavity - ameoboid cells in mesoglea - cnidocytes with nematocysts - Hydra and jellies alternate between polyp and medusa stages; coral and anemones have only polyps
II. Animal Diversity C. Bilateria – Triploblastic: gastrulation and mesoderm formation (acoelomate, pseudocoelomate, or eucoelomate)
II. Animal Diversity C. Bilateria – Triploblastic: gastrulation and mesoderm formation (acoelomate, pseudocoelomate, or eucoelomate) Bilaterally Symmetrical – “head” and “top” concentration of sensory systems at front “cephalization”
II. Animal Diversity C. Bilateria 1. Protostomes – blastopore forms mouth a. Lophotrochozoans b. Ecdysozoans 2. Deuterostomes – blastopore forms anus a. Echinodermata b. Hemichordata c. Chordata
II. Animal Diversity a. Lophotrochozoans - Lophophore (feeding structure) or trochophore larvae
II. Animal Diversity a. Lophotrochozoans
II. Animal Diversity a. Lophotrochozoans 1. Platyhelminthes a. Diversity - Planarians (free-living)
II. Animal Diversity a. Lophotrochozoans 1. Platyhelminthes a. Diversity - Planarians - Tapeworms - parasitic
II. Animal Diversity a. Lophotrochozoans 1. Platyhelminthes a. Diversity - Planarians - Tapeworms - parasitic - Flukes – parasitic Complex life cycles Life cycle of a blood fluke, Schistosoma mansoni
II. Animal Diversity a. Lophotrochozoans 1. Platyhelminthes b. body plan - bilateral - nerve net cephalized – nerve ring
II. Animal Diversity a. Lophotrochozoans 1. Platyhelminthes b. body plan - bilateral - nerve net cephalized – nerve ring - ‘acoelomate’ – deep tissues…
II. Animal Diversity a. Lophotrochozoans 1. Platyhelminthes b. body plan - bilateral - nerve net cephalized – nerve ring - ‘acoelomate’ – deep tissues… - pharynx and convoluted gut: convoluted gut serves to distribute nutrients to “deep” tissues…acts as a ‘vascular’ (distributive) system… so the gut is called a “gastrovascular” cavity.