1 / 19

Tematický workshop pro studenty SPŠ stavební v Opavě

Tematický workshop pro studenty SPŠ stavební v Opavě. Výroba elektrické energie Petr Krejčí 21. 12. 2010, VŠB-TUO. Základní elektroenergetické pojmy.

questa
Download Presentation

Tematický workshop pro studenty SPŠ stavební v Opavě

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Tematický workshop pro studenty SPŠ stavební v Opavě Výroba elektrické energie Petr Krejčí 21. 12. 2010, VŠB-TUO

  2. Základní elektroenergetické pojmy Elektrizační soustava- Soubor zařízení pro výrobu, přenos a spotřebu elektrické energie. Může být provozována samostatně nebo jako část propojené elektrizační soustavy. Elektrická síť - Souhrn vedení a stanic téhož napětí galvanicky propojených, sloužících pro přenos a rozvod elektrické energie. Nadřazená síť - Část elektrizační soustavy, která má z hlediska provozu větší důležitost než ostatní části, které napájí a jsou zpravidla nižšího napětí. Přenosová síť - Část elektrizační soustavy, tvořící přenosovou cestu pro napájení velkých stanic nebo uzlů. Rozvodná (distribuční) síť - Část elektrizační soustavy sloužící pro dodávku el. energie odběratelům.

  3. Spotřeba ČR - 16.4.2003- pětiminutové hodnoty, max: 8395 MW (620), min: 6992 MW (300) Špičkové zatížení Pološpičkové zatížení Základní zatížení

  4. Výroba elektrické energie V tzv. klasických tepelných elektrárnách se v kotli ohřívá voda, přeměňuje se v páru a ta uvádí do pohybu turbínu. Turína pohání alternátor, který vyrábí elektrickou energii, jež je odváděna vedeními vysokého napětí. Teplo se v tepelných elektrárnách vytváří v kotli spalováním fosilního paliva (tuhým palivem bývá černé a hnědé uhlí, kapalným palivem je ropa, oleje, mazut, plynným palivem je zemní plyn) nebo štěpením atomů. Jaderné elektrárny jsou také tepelnými elektrárnami a od elektráren na fosilní paliva se liší tím, že mají místo parního kotlereaktor, v němž v jaderném palivu probíhá řízená řetězová štěpná reakce. Jaderným palivem bývá přírodníuran, uran obohacený izotopem U235nebo plutonium.

  5. Výroba elektrické energie Vodní elektrárny pohání voda z řek, příliv a odliv moře nebo energie mořských vln. Vodní turbíny lze spustit během několika minut. Vodní energii, která je okamžitě k dispozici, lze proto jednoduše využít při náhlém zvýšení poptávky po elektrické energii. Vodní elektrárny nejsou tak složité jako elektrárny tepelné. Nepotřebují kotelnu a mají jednodušší turbíny. Lze je ovládat i dálkově a k obsluze stačí méně zaměstnanců. Vhodně doplňují tepelné elektrárny v elektrizační soustavě. Nevýhodou je, že nemohou stát všude, pouze tam, kde je dostatečný spád vody nebo kde je možné v nádrži naakumulovat dostatečné množství vody. Přílivové a příbojové elektrárny, nebo dokonce elektrárny využívající mořského vlnění lze stavět jen na příhodných místech.  Ve světě pracují i sluneční a větrné elektrárny, ale zatím jen v zanedbatelném množství, protože sluneční a větrnou energiiještě nedokážeme dostatečně účelně využít. Sluneční a větrné elektrárny k výrobě určitého množství energie potřebují nesrovnatelně více prostoru než klasické elektrárny. Na některých vhodných místech se stavějí geotermální elektrárny, které využívají tepla z nitra Země.

  6. Schéma spalovací tepelné elektrárny

  7. Kondenzační elektrárna potrubí spojka ~ přehřívák páry turbína generátor kotel kondenzátor páry oběhové čerpadlo 10 - 15 kV kondenzační turbosoustrojí 550 °C 20 MPa

  8. Teplárna ~ tr, pr, ir tepelný konzum blokový transformátor VN / 400 kV protitlaké turbosoustrojí odběr tepla

  9. Jaderná elektrárna 1. Reaktor, 2. Parogenerátor, 3. Čerpadlo, 4. Turbína, 5. Generátor, 6. Kondenzátor, 7. Přívod a odvod chladící vody

  10. Materiály Jaderné palivo uran (U235, U233, U238), plutonium (Pu239), thorium (Th239) - ve formě čistých kovů (kovová paliva) - ve formě oxidů (keramická paliva) Moderátory a reflektory (zpomalují a odráží neutrony) - těžká voda, grafit, berylium, polyfenyly Chladiva - plynná (vzduch, CO2, helium) - kapalná (roztavené soli – fluorid litný, fluorid berylnatý, fluorid zirkoničitý, tekuté kovy – sodík a jeho slitiny s hořčíkem, vizmut s olovem, rtuť) Absorbční materiály (pro řízení a ochrany) - materiály obsahující bór (borité oceli, kyselina boritá), hafnium, kadmium

  11. Vodní elektrárny Kaplanova turbína (pro největší průtočná množství a nejmenší spády 2 - 80m)

  12. Francisova turbína (pro střední průtočná množství a střední spády 17 - 400m)

  13. Peltonova turbína (pro nejmenší průtočná množství a nejvyšší spády 400 - 1700m)

  14. Přečerpávací elektrárny Elektrárny s umělou nebo smíšenou akumulací 4 strojové uspořádání (turbína, alternátor, čerpadlo, motor) 3 strojové uspořádání (alternátor pracuje i jako motor) 2 strojové uspořádání (reverzní turbína pracuje i jako čerpadlo)

  15. Netradiční zdroje elektrické energie Odhadem bylo v roce 2004 vyrobeno 400 TWh „obnovitelné elektrické energie“, z čehož více než 70% pochází z vody.

  16. Větrná energie ρ je hustota vzduchu (kg.m-3) A je povrch rotoru (m2) V je rychlost větru (m.s-1) Ceje elektrická účinnost (%)

  17. Solární energie Aktivní – přeměňují sluneční záření na elektrickou energii Pasivní – přeměňují sluneční záření na teplo pomocí kolektoru Na Zem dopadá sluneční záření 1,8.1017 W Solární konstanta 1370 W.m-2 (energie dopadající na povrh atmosféry) Doba svitu 1600 - 2200 hodin

  18. Kyslíko-vodíkový palivový článek

  19. Děkuji za pozornost.

More Related