1 / 13

Felszín alatti vizek védelme ÁRAMLÁSI VISZONYOK ÉS VÍZMÉRLEGEK Összefoglalás

Simonffy Zoltán Vízi Közmű és Környezetmérnöki Tanszék MTA Vízgazdálkodási Kutatócsoport. Felszín alatti vizek védelme ÁRAMLÁSI VISZONYOK ÉS VÍZMÉRLEGEK Összefoglalás. transzspiráció. Merev vázú közetekben tárolt vizek.

ranee
Download Presentation

Felszín alatti vizek védelme ÁRAMLÁSI VISZONYOK ÉS VÍZMÉRLEGEK Összefoglalás

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Simonffy Zoltán Vízi Közmű és Környezetmérnöki Tanszék MTA Vízgazdálkodási Kutatócsoport Felszín alatti vizek védelme ÁRAMLÁSI VISZONYOK ÉS VÍZMÉRLEGEKÖsszefoglalás

  2. transzspiráció Merev vázú közetekben tárolt vizek Porózus kőzetekben tárolt vizek talajnedvesség telítetlen zóna források hasadékvizek karsztvizek talajvíz partiszűrésű víz alaphozam rétegvíz telített zóna Egy kis terminológia … növényzet felszíni vizek FELSZÍN ALATTI VIZEK termálvizek

  3. vízvezető réteg (kavics,homok) karsztos hegyvidék féligáteresztő réteg (lösz, iszap, agyag) ablak lencse EGY TÖBBRÉTEGŰ FELSZÍN ALATTI ÁRAMLÁSI RENDSZER ÖSSZETEVŐI

  4. Utánpótlódás: csapadékból történő beszivárgás < 1 év Megcsapolás: párolgás vagy vízfolyás EGY TÖBBRÉTEGŰ FELSZÍN ALATTI ÁRAMLÁSI RENDSZER ÖSSZETEVŐI 1000 év 10 év Utánpótlódási és megcsapolási helyek közötti áramlási pályák, ennek megfelelő potenciálviszonyok!!! 100 év

  5. VÍZKIVÉTEL HATÁSA A REGIONÁLIS ÁRAMLÁSI RENDSZERRE

  6. K Btv Qfsz-fa ETtv Qfa-fsz Qpbe ΔVtv Qpki A VÍZMÉRLEG Vízmérleg a telített zónára ΔVtv/Δt = A·(Btv - ETtv) + Qbe - Qki + Qfsz-fa – Qfa-fsz – K A: vízgyűjtőterület (L2) Δt: a vízmérleg időszaka (T) ΔVtv: a tárolt készlet megváltozása a viszonyítási szint alatt (L) Btv: beszivárgás a talajvízbe (L/T) ETtv: párolgás a talajvízből (L/T) Qbe: oldalirányú beáramlás (L3/T) Qki: oldalirányú kiáramlás (L3/T) Qfsz-fa: a felszíni vizekből származó szivárgás (partiszűrés is!) (L3/T) Qfa-fsz:a felszíni vizeket tápláló felszín alatti víz(L3/T) K: vízkivétel(L3/T)

  7. HIDRAULIKAI JELLEMZŐK --- A VÍZMOZGÁS DIFFERENCIÁLEGYENLETE Induljunk ki a vízmérlegből, de úgy, hogy az elem térfogata V, területe A V·s ·Δh/Δt = Qbe - Qki + A·(Btv - ETtv)+ Qfsz-fa – Qfa-fsz – K s: tározási tényező, az egységnyi nyomásváltozásra jutó tárolt készlet változása (1/L) h: piezometrikus potenciál (L) A jobb oldalon a külső forrásokat és nyelőket vonjuk össze és az egész egyenletet osszuk el a térfogattal: s ·Δh/Δt = (Qpbe - Qpki)/V + q q: térfogategységre eső forrás-nyelő (1/T) A jobb oldal első tagja a belépő és a kilépő hozam eredője, vagyis a sebességvektornak (v) a V térfogat felületére vonatkozó integrálja, vagyis a vektor divergenciája, a nyomásváltozás idő szerinti differenciálhányadosa helyett a parciális differenciál írható: s ·h/t = - div(v) + q Ha a sebességet a Darcy-törvény szerint számítjuk, azaz v = - K. grad(h), akkor: s ·h/t = K ·div[grad(h)] + q = K ·2h + q --- ez a Bussinesq-egyenlet

  8. Btv - ETtv Btv ETtv A TALAJVÍZHÁZTARTÁSI JELLEGGÖRBE Hosszú idejű átlagos viszonyok esetén a tározás zérus, Btv - ETtv a talajvíz szintjén jelentkező átlagos vízforgalom Az átlagos talajvízszinttől való függést mutatja a jelleggörbe Bfsz Bfsz – Btv + ETtv = ETfsz (Btv - Etv )átl = f (Hátl) • Egy talajvízháztartási jelleggörbe • adott talajszelvény típusra, • adott meteorológiai viszonyokra és • adott növényzetre • vonatkozik ETfsz

  9. Btv - ETtv Btv Btv - ETtv ETtv Btv Btv - ETtv ETtv Btv Homokos talaj, Sekély gyökérzet ETtv Iszapos talaj Sekély gyökérzet Iszapos talaj Mély gyökérzet A TALAJVÍZHÁZTARTÁSI JELLEGGÖRBE TÍPUSAI

  10. Qvf Qfa-fsz Qfsz-fa Hfav1 Hb Hfsz Hfav2 VÍZFOLYÁSOK ÉS A TALAJVÍZ KAPCSOLATA A vízforgalmat a meder vezetőképessége (ellenállása) és a felszíni és a felszín alatti víz nyomásszintje közötti különbség határozza meg Hvf = f(Qvf), Qvf = f(Qfsz-fav) qfsz-fa = c.(Hfsz-Hfav2), ha Hfav2 > Hb = c.(Hfsz-Hb), ha Hfav2 < Hb qfa-fsz = c.(Hfsz-Hfav1) , (qfa-fsz< 0) c: a meder átszivárgási együtthatója 1/c: a meder ellenállása Qfsz-fa = B.L.qfsz-fa Qfa-fsz = B.L.qfa-fsz B.L: aktív mederfelület

  11. A MODELLEZÉS ELEMEI (l. részletesebben a modellezes.doc file-ban) ADATGYŰJTÉS KONCEPCIONÁLIS MODELL

  12. A MODELLEZÉS ELEMEI Koncepcionális modell A modell geometriai felépítése (határai, 1, 2 vagy 3 dimenzió, horizontális felosztás, rétegfelosztás) Peremfeltételek (választás a három típusból: adott nyomású, adott hozamú/vízzáró, nyomástól függő hozam) Az idő (permanens vagy nem permanens modell, az utóbbi esetében kezdeti feltétel és időlépcsők) Források és nyelők (beszivárgás, párolgás, vízfolyások, tavak, vízkivételek) Transzportfolyamatok (csak advekció, advekció + diszperzió, a szennyezőanyagtól és a közegtől függő egyéb folyamatok: adszorbció, lebomlás, kémiai átalakulások  több komponens?)

  13. A MODELLEZÉS ELEMEI ADATGYŰJTÉS KONCEPCIONÁLIS MODELL SZOFTVER VÁLASZTÁS VERIFIKÁCIÓ előkészítő fázis ELŐZETES SZÁMÍTÁSOK KALIBRÁCIÓ PARAMÉTER- BECSLÉS kidolgozási fázis VALIDÁCIÓ SZIMULÁCIÓ értékelési fázis ÉRTÉKELÉS

More Related