1 / 36

Fadjar Shadiq, M.App.Sc PPPPTK Matematika & SEAMEO QITEP in Math

Kurikulum Program Studi Pendidikan Matematika yang Sesuai dengan Kebutuhan Stake Holders: Pengalaman Membina Guru Matenatika di PPPTK Matematika. Fadjar Shadiq, M.App.Sc PPPPTK Matematika & SEAMEO QITEP in Math. Identitas Diri. Fadjar Shadiq , M.App.Sc.

rimona
Download Presentation

Fadjar Shadiq, M.App.Sc PPPPTK Matematika & SEAMEO QITEP in Math

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Kurikulum Program StudiPendidikanMatematika yang SesuaidenganKebutuhanStake Holders: PengalamanMembina Guru Matenatikadi PPPTK Matematika Fadjar Shadiq, M.App.Sc PPPPTK Matematika & SEAMEO QITEP in Math

  2. Identitas Diri FadjarShadiq, M.App.Sc Tempat\TanggalLahir: Sumenep, 20-4-55 Pendidikan: Unesa dan Curtin University of Technology, Perth, WA Pengalaman Kerja: Guru SMA dan Instruktur PKG Matematika di Kupang fadjar_p3g@yahoo.com & www.fadjarp3g.wordpress.com Telepon: (0274)880762 atau 08156896973

  3. 6 hijaudan 7 oranyeatau7 hijaudan6 oranye

  4. Bermain-Main DenganBilangan TulisbilanganI yang terdiriatastigaangka; dengansyaratangkaratusanharus paling tidakdualebihnyadariangkasatuan (mis 724) • Tukarangkaratusandenganangkasatuan. Nytakan sebagai bilangan II (427) • Bilangan I dikurangibilanganII (724–427 = 297) • Tukarlagiangkaratusandenganangkasatuan • Jumlahkankeduabilangantersebut (297+792) • Berapahasilnya? 1089 ya? Mengapa?

  5. Pythagoras KomentarBapak/Ibu?

  6. Descartes KomentarBapak/Ibu?

  7. Mengapa? BagaimanaMembantunya?

  8. Source: YeapBenHar Photo: Princess Elizabeth Primary School

  9. Siswadan Guru SebagaiFokus Siswa MI/MTs/MA  Guru Matematika  UIN Perlunya UIN menghasilkanguru matematika yang ‘siap pakai’. “Bagaimana caranya?”

  10. Apa yang diberikan di UIN sudah sesuai dengan kebutuhan (needs) mahasiswa?Apakebutuhanmerekasebagai guru Matematika? Perlunyapengenalan pembelajaranMatematikadi kelas secara praktisdandini

  11. Bagaimana UIN menyiapkancalongurunyatersebut? Bagaimanapembelajarannyadikelas? Mengapa 5 – (–3) = 8? sin 30 = 1/2? Carisemuahimpunanbilanganasliberurutan yang jumlahnya 1000. Pemecahanmasalahmenjadifokuspembelajaran Dimulai dg masalah

  12. Belajardari Video Apasajapersamaandanperbedaanprosespembelajarannya? Bagaimana guru diJepangmemfasilitasisiswanyauntukbelajarsecarabermaknadanmemfasilitasisiswanyauntukbelajarberpikir, bernalar, danberkomunikasi? Komentar? Start

  13. What Are the Differences and Similarities Between Japanese and Indonesian Students?

  14. What is Mathematics? De Lange (2005) stated: “Mathematics could be seen as the language that describes patterns – both patterns in nature and patterns invented by the human mind. Those patterns can either be real or imagined, visual or mental, static or dynamic, qualitative or quantitative, purely utilitarian or of little more than recreational interest. They can arise from the world around us, from depth of space and time, or from the inner workings of the human mind.”

  15. What is Mathematics? • Ebbutt and Straker (1995): Mathematics is: • a search of patterns & relationship • a creative activity involving imagination, intuition, and discovery • a way of solving problems • a means of communicating information or ideas

  16. TujuanPemb Mat di IND Content Knowledge Reasoning(Inductive and Deductive) Problem Solving Communication Good Attitude Pentingnyakemampuanberpikir

  17. “The Aims of T&L of Math in Japan.“ to help pupils acquire basic and fundamental knowledge and skills regarding numbers, quantities and geometrical figures, to foster their ability to think and express with good perspective and logically on matters of everyday life, to help pupils find pleasure in mathematical activities and appreciate the value of mathematical approaches, and to foster an attitude to willingly make use of mathematics in their daily lives as well as in their learning.

  18. PertanyaanKunci Bagaimanamemfasilitasimahasiswa UIN sehinggaketikamerekamengajarnantidapatmemfasilitasisiswanyasehinggaparasiswamerekadapatmencapai lima tujuandimaksud?  Terutama yang berkaitdengankemampuanberpikirdanbernalar.

  19. Materi (content)untuk mahasiswa apa?Bagaimana cara penyampaiannya (delivery system)?Bagaimana penilaiannya (evaluation)?

  20. MenurutStandarPendidikdanTenagaKependidikan, seorangpendidikharusmenguasai4 kompetensi, yaitu: • komppedagogik, • kompprofesional, • kompkepribadian, dan • kompsosial. • Kaitannyadengan UKA, UKG, PKG dll Materi (Content)untuk Mahasiswa Apa?

  21. BelajarBermakna? Bilanganmana yang paling mudahdiingat? Mengapa? Bagaimanacaranya? Bagaimana Cara Menyampaikan? 31.157.132 31.117.532 23.571.113

  22. PentingnyaBelajarBermakna • Bil (23.571.113) dan (31.117.532) bermaknakarenaberkaitdgn 6 bil prima pertama (2, 3, 5, 7, 11, 13) • Siswa hrs belajarsecarabermakna, dapatmengaitkanpengetahuan yang barudenganpengethyg lama Faktor yang paling menentukanpadaprosespembelajaranadalahapa yang sudahdiketahuisiswa

  23. Students should construct their knowledge by themselves based on their ‘previous/prior knowledge’ Meaningful Learning Learning with Understanding Constructivism

  24. Pertanyaan Bagaimanamemfasiltasicalon guru matematika agar merekadapatmemfasilitasisiswanya agar belajarbermakna(meaningful)? Bagaimanamemfasiltasicalon guru matematika agar merekadapatmemfasilitasisiswanya agar belajarberpikir, bernalar,danberkomunikasi?

  25. Start the Lesson with Problem The weight of a chocolate packed in a square box is 400g. How much does it weigh which is packed in like following way?”

  26. What Are the Differences and Similarities Between Japanese and Indonesian Mathematics Classroom?

  27. What Are the Differences and Similarities Between Japanese and Indonesian Mathematics Classroom?

  28. Start the Lesson with Problem Prof. MASAMI ISODA‘s Problem Rod CD connected with rod AB at B and AB=CB=BD. When A fixed on the line and D slides on the line, how does C move?

  29. 1+3+4=8 6 5 1+3=4 4 1 3 2 1 1 19,5 24,5 4,5 9,5 14,5 29,5 • Find a vertical line to divide the data into two equal parts.Source: Shadiq (2011) How to Teach Median (N = 22)? Need 3 more data to reach 11 or1/2 n

  30. A Good Example of Student’s Note

  31. Issu-issu Standard dari BSNP Induktifdandeduktif Konstruktivisme Fokus mata kuliah yang berkait langsung dengan praktek dan pengenalan pembelajaran matematika di kelas secara praktis Perlunya Dosen UIN sebagai model Perlunya Dosen UIN yang mengikuti program S2/S3 pendidikan matematika

  32. Issu-issu George Polya (1973: VII): “Yes, mathematics has two faces; it is the rigorous science of Euclid but it is also something else. Mathematics presented in the Euclidean way appears as a systematic, deductive science; but mathematics in the making appears as an experimental, inductive science.”

  33. Bagaimanakitayakinbahwamahasiswa UIN sudahmemilikibekal: • komppedagogik, • kompprofesional, • kompkepribadian, dan • kompsosial. • Kaitannyadengan UKA, UKG, PKG dll Bagaimana Penilaiannya (Evaluation)?

  34. AkhirulKalam • Mohon maaf jika ada hal-hal yang kurang berkenan. Mudah-mudahan usaha dan upaya kemenag melalui UIN untuk ikut mencerdaskan bangsa akan terwujud dengan gemilang, sesuai dengan Visi Program Studi; “Unggul dan terkemuka dalam pemaduan dan pengembangan studi keislaman dan keilmuan dalam bidang Pendidikan Matematika.” Amin.

More Related