1 / 44

ŠTATISTIKA

ŠTATISTIKA. Základné pojmy. Štatistický súbor Rozsah súboru Kvantitatívny znak Kvalitatívny znak ARITMETICKÝ PRIEMER MODUS MEDIÁN Grafy -Polygón početnosti a histogram SMERODAJNÁ ODCHÝLKA DISPERZIA-ROZPTYL Štatistická závislosť znakov-KOEFICIENT KORElÁCIE.

rona
Download Presentation

ŠTATISTIKA

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. ŠTATISTIKA

  2. Základné pojmy • Štatistický súbor • Rozsah súboru • Kvantitatívny znak • Kvalitatívny znak • ARITMETICKÝ PRIEMER • MODUS • MEDIÁN • Grafy -Polygón početnosti a histogram • SMERODAJNÁ ODCHÝLKA • DISPERZIA-ROZPTYL • Štatistická závislosť znakov-KOEFICIENT KORElÁCIE

  3. Pr.1 Vypočítajte priemerný prospech žiaka Janka Hraška na konci roka ak dosiahol takéto výsledky z jednotlivých predmetov OBSAH

  4. Aritmetický priemer známok je: OBSAH

  5. Def: Štatistickým súborom rozumieme danú konečnú neprázdnu množinu M.(napr. množina predmetov, resp.známok) Počet n všetkých prvkov množiny M sa nazýva rozsah súboru.(počet predmetov-známok.....n=7) • Kvantitatívnym znakom súboru M nazývame ľubovoľnú funkciu f, ktorá zobrazuje množinu M do množiny R. (Jednotlivým predmetom priradí známku, teda reálne číslo) (Hodnoty tejto funkcie označme x1, x2, ....xn)

  6. ARITMETICKÝ PRIEMER Ak hodnoty množiny M označíme x1, x2, x3 …xn , tak aritmetickým priemerom znaku x je číslo OBSAH

  7. Vážený priemer • Absolútna početnosť • Relatívna početnosť

  8. Pr 2. V triede je 9 chlapcov, ktorých výšky sú uvedené v tabuľke: • Vypočítajte priemer (vážený) • Modus • Medián • Smerodajnú odchýlku • Zostrojte histogram OBSAH

  9. Tabuľky OBSAH

  10. Priemer OBSAH

  11. MODUS Je najčastejšie sa vyskytujúca hodnota spomedzi x1, x2, .....xn. Označenie: mod(x)=xj0, nj<nj0 OBSAH

  12. MEDIÁN Je prostredná hodnota medzi číslami x1, x2, x3, .......xn ak ich usporiadame podľa veľkosti. Označenie: med(x) Poznámka:Ak rozsah súboru n je párne číslo, potom sú prostredné hodnoty dve a za medián sa berie ich aritmetický priemer. OBSAH

  13. Rozptyl a smerodajná odchýlka Okrem charakteristiky polohy je dobré vedieť aj to, nakoľko sa jednotlivé hodnoty od tejto charakteristiky odchyľujú. Na to sa obvykle používa tzv. smerodajná odchýlka resp. rozptyl. OBSAH

  14. Def.: Nech x1, x2, ....xn sú všetky hodnoty daného znaku x. Potom sa číslo s nazýva SMERODAJNÁ ODCHÝLKA, pričom: OBSAH

  15. Resp.

  16. Poznámka: Čím je číslos menšie, tým sú menšie rozdiely a tým sú čísla xi rozmiestnené bližšie okolo aritmetického priemeru.

  17. Veta: Interval obsahuje aspoň všetkých členov x1,2, x3, .....xn. OBSAH

  18. Druhá mocnina čísla s sa nazýva DISPERZIA alebo ROZPTYL

  19. resp. OBSAH

  20. Poznámka: Rozptyl, podobne ako smerodajná odchýlka, poukazuje na to, nakoľko sa odchyľujú jednotlivé čísla ( hodnoty štatistického súboru) od priemeru. OBSAH

  21. Riešme príklad 2: V triede je 9 chlapcov, ktorých výšky sú uvedené v tabuľke: OBSAH

  22. GRAFY

  23. PRÍKLADY K13, K 14, K17 OBSAH

  24. Štatistická závislosť znakov KOEFICIENT KORELÁCIE (korelačná odchýlka)

  25. V mnohých prípadoch sa na prvkoch základného súboru sledujú dva znaky X, Y. Jednou z úloh matematickej štatistiky je kvantitatívne charakterizovať „mieru závislosti“ medzi týmito dvoma znakmi ( veličinami- napr. medzi výškou a hmotnosťou študentov)

  26. V aplikáciach matematickej štatistiky obľúbenou charakteristikou závislosti je KOEFICIENT KORELÁCIE (korelačná odchýlka)

  27. Def: • Nech x1, x2, ......xn sú hodnoty znaku X • Nech y1, y2, ......yn sú hodnoty znaku Y vo výberovom súbore • Nech sú aritmetické priemery, resp. disperzie(rozptyly), resp. smerodajné odchýlky týchto znakov vo výberovom súbore, tj.

  28. Výraz : sa nazýva KONVARIANCIA znakov X,Y

  29. Koeficientom korelácie r je potom hodnota: OBSAH

  30. Poznámka: • Koeficient korelácie určuje, do akej miery lineárny vzťah y = ax+b aproximuje (približuje) hodnoty znaku Y hodnotami X. • Zaužívalo sa nasledujúce odstupňovanie tesnosti lineárnej závislosti medzi hodnotami znakov X, Y :

  31. Malá, ak • Mierna, ak • Silná, ak

  32. Dá sa ukázať, že pre koeficient korelácie platí pričom vtedy a len vtedy, keď závislosť medzi znakmi X, Y je lineárna, t.j keď existujú také čísla a, b že y =ax+b OBSAH

  33. Riešme príklad: str. 31-Pr.1 • Vypočítajte koeficient korelácie a charakterizujte mieru väzby medzi výškou a hmotnosťou študentov.

  34. Odpoveď Koeficient korelácie je 0,79. Na základe tohto výsledku možno hovoriť o miernej až silnej lineárnej závislosti medzi výškou a hmotnosťou študentov vybraného gymnázia. Domáca úloha

  35. Pr. (K20) Osem žiakov z triedy vypočítalo koeficient korelácie medzi výškou a hmotnosťou členov svojej rodiny. V tabuľke sú uvedené ich výsledky. Koľko členov sa pri výpočte určite pomýlilo? Domáca úloha

  36. A) Štyria B) Traja C) Dvaja D) Jeden

  37. Správna odpoveď je: Pomýlili sa štyria, teda A) lebo pre koeficient korelácie platí

  38. Pr. (K22) V tabuľke sú uvedené výsledky piatich žiakov, testovaných z matematiky a z fyziky. Z každého z testov sa dalo získať maximálne 15 bodov. Z čiastočného spracovania týchto výsledkov vyplýva, že z matematiky získali študenti priemerne 11 bodov, z fyziky 9,2 bodu. Smerodajná odchýlka pri teste z matematiky bola 2,4 bodu, pri teste z fyziky 2,2 bodu. Aký bol koeficient korelácie medzi obidvoma predmetmi? Domáca úloha

  39. A) 0,4 B) 0,6 C) 0,8 D) 1

  40. Správna odpoveď je: Koeficient korelácie medzi dvoma predmetmi je 0,8 teda C.

  41. Domáca úloha: • Matematika-zošit 3 .......Str.32- Pr. 2 • Matematika- zošit 3..........Str.33- cv. 1 • Zbierka..............................str. 56-pr. Zbierka..............................str. 57- pr. 8, 9 • Matematika strednej školy v testoch 2.časť.......str.94/ K20, K22

  42. Spracoval: Mgr. Róbert Janok Boli použité aj príspevky študentov: Michal Bošiak-oktáva v šk. roku 2005/06 (úlohy K13,K14, K17-spracované v exeli) Gymnázium Sečovce, Kollárova 17

More Related