160 likes | 344 Views
Cap. 18 – Corrosão e Degradação dos Materiais. Mecanismos de Deterioração:. Metais : perda efetiva de material por dissolução (corrosão) ou formação de película de material não-metálico (oxidação)
E N D
Cap. 18 – Corrosão e Degradação dos Materiais • Mecanismos de Deterioração: • Metais : perda efetiva de material por dissolução (corrosão) ou formação de película de material não-metálico (oxidação) • Cerâmicos : relativamente resistentes à deterioração em temperaturas elevadas mas também podem sofrer corrosão (dissolução química) • Polímeros (degradação): Podem se dissolver em um solvente líquido, sofrer inchamento (absorvendo o solvente) ou sofrer alteração nas suas estruturas moleculares sob radiações eletromagnéticas (principalmente a ultravioleta). Ex.: polietileno exposto à temperaturas elevadas em atmosfera rica em O2 torna-se frágil. • Considerações eletroquímicas: • -anodos: átomos metálicos tendem a ceder • elétrons (reação de oxidação): Zn Z2n+ + 2e- • -catodos; átomos receptores de elétrons • (reação de redução) : 2H+ + 2e- H2 • -Obs: íon metálico em solução também pode ser • Reduzido, diminuindo seu estado de valência.
Par galvânico: Dois metais conectados eletricamente entre si em um eletrólito. Um se torna o anodo (sofre a corrosão) e o outro o catodo , exs.: Fe-Cu e Fe-Zn Obs: Os metais não oxidam-se com o mesmo grau de facilidade. • As medidas de voltagem de pilhas com diferentes pares galvânicos representam apenas as diferenças no potencial elétrico, logo é necessário estabelecer uma pilha de referência (potencial de eletrodo) • - Semi-pilha de referência: eletrodo de Pt imerso numa solução 1M de íons H+ saturada com gás H2 a 25oC e pressão de 1 atm (condições ideais).
Potencial de eletrodo: Informações sobre tendências de ocorrência dereações e as direções de sua espontaneidade. A Tab. 18.1 aplica-se para metais puros em condições ideais. Variação na temperatura, na concentração da solução ou eletrodos de ligas alteram o potencial da pilha e também podem reverter a direção da reação espontânea. Equação de Nerst: Classificação prática: A Tab. 18.2 é uma classificação mais prática. Mostra as reatividades de metais e ligas comerciais imersas em água do mar
Os metais são mais estáveis no estado iônico e a sua passagem para o estado oxidado reduz a energia livre logo, são encontrados na natureza como compostos químicos; óxidos, hidróxidos, carbonatos, silicatos, sulfatos. • exceções; metais nobres, Au e Pt . A maioria dos ambientes não lhes favorece a oxidação. • Os potenciais de eletrodo só representam a intensidade da força eletromotriz das pilhas além das direções das reações espontâneas. Nada informam sobre a taxa de corrosão ou perda de espessura do material (ou taxa de remoção). Taxa de corrosão ou taxa de penetração da corrosão (TPC): • Estimativa da taxa de corrosão, ex.; pilha eletroquímica padrão Zn/H2. as reações não ocorrem nas superfícies dos eletrodos (sistema fora do equilíbrio). Há uma polarização (deslocamento de cada potencial do seu valor de equilíbrio) cuja magnitude é a sobretensão (). • Obs: As reações eletroquímicas são realizadas em sequência de etapas que ocorrem na interface eletrodo metálico-solução e na solução eletrolítica
Tipos de Polarização: • Por ativação: A taxa é controlada pela etapa mais lenta de uma série de reações. Há uma barreira devido a ativação Ex: reação de redução de íons H+ para formar bolhas do gás H2 na superfície de um eletrodo de Zn (Fig. 18.6). • Por concentração: A taxa é limitada pela difusão no interior da solução. • Ex: reação de redução (anterior) com evolução do hidrogênio (Fig. 18.8). • -Para taxa lenta de reação e/ou alta concentração de H+ sempre há suprimento desses íons em solução na região próxima à interface • -Para taxas altas de reação e baixa concentração de íons H+ haverá escassez desses íons próximo à interface (necessários para a reação), portanto, a difusão desses íons é o fator limitante da taxa de reação.
Passividade: Metais ativos, sob certas condições ambientes tornam-se inertes, formando películas finas e aderentes sobre a sua superfície (barreira de proteção contra corrosão adicional), exs: Fe, Cr, Ni, Ti e suas ligas • Fatores que influem na taxa de corrosão; temperatura, concentração do meio corrosivo (ex. ácidos), deformações plásticas a frio • Formas de corrosão: • Uniforme (mais comum): Ocorre na totalidade da superfície exposta gerando uma encrustação. Há reações de redução e oxidação em escala microscópica em toda superfície, ex.: ferrugem • Galvânica: dois metais ou ligas metálicas dissimilares são acoplados eletricamente. O mais reativo é o corroído (anodo) e o mais inerte é protegido (catodo), ex.s: parafusos de aço em contato com latão no mar, tubulações de Cu e aço unidas em aquecedores de água • Obs: A taxa de corrosão galvânica depende das áreas superficiais relativas (anodo e catodo em contato no eletrólito). Quanto < área do anodo, > a taxa de corrosão (conforme a eq. 18.24)
Eq. 18.24 -Taxa de corrosão (r)(r) em função da densidade de corrente (i) ou corrente / unidade de área da superfície corroída. • Medidas preventivas contra a corrosão galvânica: • -seleção de materiais próximos na série galvânica • -evitar razões entre áreas desfavoráveis (catodo/anodo) • -isolar eletricamente metais dissimilares • -conectar eletricamente um terceiro metal com características • mais anódicas (proteção catódica) • Em frestas: Ocorre por diferença de concentração nos íons ou gases dissolvidos no eletrólito e entre duas regiões da mesma peça metálica,como em fendas onde a solução fica estagnada e há exaustão de O2. • Medidas preventivas : -utilização de juntas soldadas ao invés de rebites e parafusos. -remoção frequente de depósitos acumulados.
Por pites (extremamente traiçoeira): Pequenos buracos que se formam na superfície e penetram no material praticamente na vertical. Há pouca perda de material até a ocorrência de uma falha • Obs: - Pites podem ser gerados por defeitos na superfície (arranhões) ou pequenas variações de composição. - Amostras polidas são mais resistentes e, aços inox (susceptíveis) com adição de 2% de Mo também ficam mais resistentes • Intergranular: Ocorre preferencialmente nos contornos de grão de alguns materiais que se desintegram nestas regiões , ex.: aços inox (500 oC <T< 800 oC) em longos tempos. Formam-se pequenas partículas de precipitados de Cr23C6 nos contornos pela difusão de Cr e C, empobrecendo de Cr a zona adjacente. É um problema sério em soldas desses aços • Medidas preventivas : -tratar termicamente o aço para dissolução das partículas de Cr23C6 -redução do teor de C nestes aços (ideal < 0,03% em peso) para minimizar a formação deste carboneto • -adição de outros elementos de liga (como Ti e Nb) que tenham > tendência de formar carbonetos favorecendo o Cr permanecer em solução sólida.
Lixívia seletiva: Quando um elemento da liga é removido preferencialmente. Ex.: Zn no latão; fica somente uma massa porosa de Cu na região de remoção, comprometendo as propriedades da liga que muda sua cor. • Erosão-corrosão: Ação combinada de ataque químico e abrasão mecânica ou desgaste pelo movimento de um fluido. Prejudicial para ligas passivadas ( o revestimento deve ser reposto rápido e continuamente). Metais macios são susceptíveis; Cu e Pb -Quanto > a velocidade do fluido > a taxa de corrosão -A presença de bolhas e particulados em suspensão aumenta a severidade desta corrosão -Normalmente encontrada em tubulações (dobras, curvas, mudanças de direção, variaçoes bruscas de diâmetro, posições onde há mudança de direção do fluido tornando o escoamento turbulento) • Medidas preventivas : -modificação do projeto para eliminar efeitos de colisão do fluido e turbulências -utilização de materiais mais resistentes • -remoção de particulados e bolhas da solução • Corrosão sob tensão: Ação combinada de tensão trativa num meio corrosivo. Pequenas trincas formam-se perpendicularmente à direção das tensões (relativamente baixas e inferiores ao LRT). As tensões podem ser originadas por cargas externas ou serem residuais (variações de temperatura). Exs.: aços inox em soluções com íons cloreto, latões em soluções de amônia • Medidas preventivas : -Diminuição da tensão pela redução da carga aplicada ou aumento da área da secção reta na direção perpendicular à tensão -realizaçâo de tratamentos térmicos de recozimento para eliminar tensões residuais.
Fragilização por hidrogênio: Várias ligas sofrem considerável redução na sua ductilidade e no LRT ao serem penetradas por hidrogênio atômico. Exs.: aços de alta resistência (martensíticos) e ligas CFC (aços austeníticos, ligas de Cu, Al e Ni) endurecidas por precipitação -A fragilização (trincamento pelo H) é um tipo de falha decorrente de tensões trativas ou tensões residuais trativas que resulta em fratura frágil de forma catastrófica (as trincas crescem e propagam-se rapidamente). -O H (atômico mesmo em ppm) se difunde intersticialmente na rede cristalina causando as trincas (normalmente transgranulares) -Para a sua ocorrência é necessária alguma fonte de H e possibilidade de formação do seu componente atômico. Ex.: H2S encontrados em fluidos derivados e petróleo, gás natural e salmouras de poços de petróleo. -O H2S é considerado um veneno por retardar a formação de hidrogenio molecualr e aumentar o tempo de residência do hidrogênio atômico • Medidas preventivas : -remoção da fonte de H -tratamento térmico a temperaturas elevadas para eliminar qualquer H dissolvido -substituição por ligas mais resistentes • Formas gerais de prevenção contra corrosão: • Seleção criteriosa dos materiais para ambientes corrosivos caracterizados: • Alteração de parâmetros do meio corrosivo; redução de temperatura, velocidade do fluido • Aumento ou diminuição da concentração de algum componente • Adição de inibidores (baixas concentrações) em sistemas fechados. Eles podem reagir com o componente ativo do meio corrosivo (como o O2) eliminando-o. Também podem fixar-se na superfície do metal interferindo nas reações de redução ou oxidação • Aplicação de barreiras físicas na forma de camadas de revestimento (inertes e com grande adesão)
Proteção catódica: • Anodo de sacrifício; conexão elétrica a outro metal mais reativo (de caráter mais anódico),geralmente usa-se Zn ou Mg. Ex.: hélice de navio (bronze ao Mn) é extremamente catódica em relação aço do casco do navio. Na presença da água do mar (eletrólito forte) o casco rapidamente se corroeria. • Fornecimento de corrente contínua de fonte externa tornando o metal a ser protegido catódico -Galvanização: Aplicação de camada de Zn sobre a superfície de um aço por imersão à quente. Na atmosfera e na maioria dos ambiente o Zn é anódico em relação ao aço. Obs: Qualquer dano à superfície do material ainda acarretará numa taxa de corrosão muito lenta do Zn devido à altas razões catodo/anodo.
Oxidação: Além das reações eletroquímicas em soluções aquosas (corrosão a úmido) a corrosão também pode ocorrer em atmosferas gasosas , Normalmente no ar(corrosão a seco) gerando uma encrustaçãoou camada de óxido na superfície Metálica. Ex.: formação de carepa de óxido de ferro • Tipos de encrustação: A taxa de oxidação,ou aumento da espessura da camada, e sua tendência de proteção contra oxidação adicional está relacionada com os volumes relativos entre óxido e o metal através da razão de Pilling-Bedwort (P-B). • Obs: - Valor ideal P-B = 1 -Se P-B <1 , a película do óxido tende a ser porosa e não-protetora ( insuficiente para cobrir toda a superfície metálica. • Valores de P-B > 1 resultam em tensões de compressão na camada • Se P-B > 2 ou 3, o revestimento pode trincar e quebrar expondo continuamente a superfície metálica • Outros fatores que além da P-B influenciam na resistência à oxidação proporcionada pela camada: -alto grau de aderência -coeficiente de expansão térmica similar -elevado ponto de fusão -alta plasticidade em temperaturas elevadas
Cinética: A taxa oxidação pode ser determinada medindo-se o ganho de peso da camada de óxido (W) por unidade de área em função do tempo. -Para óxido não-poroso e bem aderente a sua taxa de crescimento é controlada por difusão iônica. Neste caso a taxa é determinada por uma relação parabólica entre W por unidade de área e o tempo. W2 = K1t + K2(eq. 18.34) , exs.: Co e Cr • Nas oxidações com encrustações porosas e que se desfolham ( P-B <1 ou P-B >2) a expressão da taxa é linear, estando o O2 sempre disponível para reagir com a superfície metálica não protegida (o óxido não é uma barreira efetiva). W = K3t (eq. 18.35), exs.: Na, K e Ta • -Em camadas muito finas (espessura < 100nm) formadas em temperaturas relativamente baixas (próximas da ambiente) também pode ser observada a relação logarítmica. W = K4 log (K5t + K6) (eq. 18.36) , exs.: Al, Fe e Cu