140 likes | 301 Views
Růstové a přírůstové funkce. Dendrometrie – cvičení 9. Růstové a přírůstové funkce. Růstová funkce je matematicky formulovaný model závislosti růstové veličiny na věku (faktory prostředí se obvykle neuvažují).
E N D
Růstové a přírůstové funkce Dendrometrie – cvičení 9
Růstové a přírůstové funkce • Růstová funkce je matematicky formulovaný model závislosti růstové veličiny na věku (faktory prostředí se obvykle neuvažují). • Přírůstová funkce je matematicky formulovaný model závislosti přírůstu růstové veličiny na věku (faktory prostředí se obvykle neuvažují).
Zadání • Pro zadané dřeviny vypočítejte parametry Michajlovovy a Korfovy růstové funkce, přírůstové funkce běžného a průměrného přírůstu, indexy korelace a determinace.
Tvorba modelu růstové a přírůstové funkce • Správný prvotní odhad parametrů modelu • a je asymptota funkce, tedy maximálně dosažitelná hodnota růstové veličiny v daných podmínkách • Parametry k a n udávají tvar funkce a jejich odhady závisí na použité funkci (pro náš případ k=1 pro Michajlovovufci, k=10 pro Korfovufci a n=1,5 pro Korfovufci) • Pro každou hodnotu reálně změřené růstové veličiny se musí spočítat i hodnota modelová pomocí vhodně zvolené funkce
Tvorba modelu růstové a přírůstové funkce výšky • Výška bude modelována pomocí Michajlovovy růstové funkce • A,kjsou parametry modelu a t je věk
Tvorba modelu růstové a přírůstové funkce výšky • Je nutné dopočítat sumu čtverců reziduí pro optimalizaci nastavení parametrů modelu a celkovou kvalitu modelu • Reziduum = měřená hodnota-modelová hodnota • Čtverec rezidua = reziduum2 • Ideální hodnoty parametrů a vhodné postavení modelu je ve stavu, když suma čtverců reziduí je na svém minimu • Minimum RSČ lze dopočítat pomocí řešitele v Excelu
Tvorba modelu růstové a přírůstové funkce výšky • Pro spočítanou růstovou funkci je nutné dopočítat hodnoty běžného a průměrného přírůstu výšky
Tvorba modelu růstové a přírůstové funkce výšky • Vytvoření společného grafu pro růstovou funkci i přírůstové funkce výšky
Tvorba modelu růstové a přírůstové funkce tloušťky • Výška bude modelována pomocí Korfovy růstové funkce • A,k,njsou parametry modelu a t je věk
Tvorba modelu růstové a přírůstové funkce tloušťky • Je nutné dopočítat sumu čtverců reziduí pro optimalizaci nastavení parametrů modelu a celkovou kvalitu modelu • Reziduum = měřená hodnota-modelová hodnota • Čtverec rezidua = reziduum2 • Ideální hodnoty parametrů a vhodné postavení modelu je ve stavu, když suma čtverců reziduí je na svém minimu • Minimum RSČ lze dopočítat pomocí řešitele v Excelu
Tvorba modelu růstové a přírůstové funkce tloušťky • Pro spočítanou růstovou funkci je nutné dopočítat hodnoty běžného a průměrného přírůstu tloušťky
Tvorba modelu růstové a přírůstové funkce tloušťky • Vytvoření společného grafu pro růstovou funkci i přírůstové funkce tloušťky
Výpočet indexu korelace - IR • Index korelace udává míru závislosti růstové veličiny a věku v nelineárním vztahu • y jsou měřené hodnoty růstové veličiny • ŷ jsou modelové hodnoty růstové veličiny • ȳ je průměr z měřených hodnot růstové veličiny
Výpočet indexu determinace - ID • Index determinace udává, jak velkou část variability závisle proměnné (v tomto případě růstové veličiny) je vysvětlena regresním modelem (modelem růstové funkce)