1 / 40

A New for Exoplanet Imaging

GAIA-ESF Workshop – November , 5th 2012, Torino. A New for Exoplanet Imaging. Gaël Chauvin - IPAG/CNRS - Institute of Planetology & Astrophysics of Grenoble/France.

sela
Download Presentation

A New for Exoplanet Imaging

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. GAIA-ESF Workshop – November, 5th 2012, Torino A New for Exoplanet Imaging GaëlChauvin - IPAG/CNRS - Institute of Planetology & Astrophysics of Grenoble/France Collaborations: J.-L. Beuzit, A.M. Lagrange, D. Mouillet, J. Rameau & P. Delorme (IPAG/Fr); S. Desidera, D. Mesa & R. Gratton (Oss. Padova/It); A. Boccaletti, R. Galicher, D. Rouan & P. Baudoz (LESIA/Fr); D. Apai (Uv. Arizona/US); M. Meyer, S. Quanz & M. Reggianni (ETHZ)/Swi); M. Bonnefoy, W. Brandner & C. Mordasini (MPIA/Ger); C. Moutou, A. Zurlo& A. Vigan (LAM/Fr); J. Girard, C. Dumas, , J. Milli, D. Mawet & M. Kasper (ESO); S. Udry, J. Hagelberg (Geneva/Swi)…

  2. Outline A New Era for Exoplanet Imaging I- Introduction: Why Imaging? II- Techniques & Strategy III- Results: What can we learn? IV – A New Era: VLT/SPHERE GAIA-ESF Workshop – November, 5th 2012, Torino

  3. I- Introduction PlanetHunting Techniques  Radial Velocity . Indirect technique: Doppler shift (Targets: quiet stars; activity) . Orbital & Physical properties: > Mp.sin(i), P, e, a, ω &T0 > Spin-Orbit Alignment > Architecture & Stability > exo-Earths & Habitable Zone Dumusque et al. 12; Triaud et al. 11 . Statistics: more than 800 exoplanets > Occurrencedown to Super-Earths > Planetary host: Fe/H & binarity De Sousa et al. 11; Udry & Santos 07 http://exoplanet.eu/

  4. I- Introduction PlanetHunting Techniques  Transit . (In)direct technique: 1ary/2ary eclipse. (Targets: quiet stars; activity; crowded fields) . Orbital & Physical properties: > R*/Rp, Mp, P, a, i, T0 > Planetary Interiors > Multiple: Architecture & Stability > Circumbinary planets Leger et al. 09; Doyle et al. 11; Balatha et al. 12 . Transmission/emission spectroscopy > Composition (H20, CO, NaI, KI... Haze) > Vertical T-P structure, atmospheric circulation & evaporation Swain et al. 08; Knutson et al. 09; Desert et al. 12 http://exoplanet.eu/

  5. I- Introduction PlanetHunting Techniques • μ-lensing • . Indirect technique: Unique Rel. Event • (Targets: Crowded fields; probability) • . Orbital & Physical properties: • > Mp, M*, d‏, P, a (1-5 AU) • > Super-Earths • . Free-floating, wide orbit planets? • Gould et al. 06; Cassan et al. 12  Astrometry . Indirect technique: Reflex motion (Targets: Nearby stars) . Orbital & Physical properties: > Mp, P, i, e, a, ω, T0(1-5 AU) Bean et al. 07, 08; Benedict et al. 02, 10 Muterspaugh et al. 10; Sozzetti et al. 10 http://exoplanet.eu/

  6. I- Introduction PlanetHunting Techniques • Direct Imaging • . Direct technique: Planet’s photons • (Targets: young & nearby stars) • . Orbital & Physical properties: • > L, a, e, i, ω, T0 • > Giant planets at wide orbits (>10 AU) • > Multiple: Architecture & Stability • > Planet – disk connection • Chauvin et al. 05, 10; Lafrenière et al. 07 • Soummer et al. 11; Vigan et al. 12 • . High-contrast spectroscopy • > Non-strongly irradiated EGPs • > Low-gravity, composition, non-LTE • chemistry, cloud coverage... • Janson et al. 10; Bonnefoy et al. 09, 12 http://exoplanet.eu/

  7. Outline A New Era for Exoplanet Imaging I- Introduction: Why Imaging? II- Techniques & Strategy III- Results: What can we learn? IV – A New Era: VLT/SPHERE GAIA-ESF Workshop – November, 5th 2012, Torino

  8. II- Strategy Imaging: an observing challenge! Detect/characterize something faint, angularly close to something bright. •  High image quality • - High angular resolution, PSF Stability • - Calibration of static aberrations •  Stellar Halo Brightness ‏ • - Halo attenuation/PSF subtraction • - Speckle noise •  Intrinsic companion faintness • - Long overall observations; • HIP95270 (Tuc-Hor) • VLT/NaCo H, 10” by 10” • (?) • (?)

  9. II- Strategy Dedicated Instrumentation High Angular Resolution  Spacetelescope  10m-telescopes + AO system HST Gemini S/N VLT/NACO LBT/Arizona Subaru/HiCIAO Keck

  10. II- Strategy Impressive evolution High Angular Resolution  Adaptive optics (recover diffraction-limit resolution)

  11. II- Strategy The art of PSF subtraction • High Contrast at inner angles •  Main limitation (<1.0-2.0’’): Atmospheric & instrumental speckles •  Coronagraphy • - Occulting and Lyot-pupil mask • - 4QP Mask, Boccaletti et al. 08 • - new: PIAAC, ALC, APC& Vortex •  Differential Imaging • - Polarimetric (PDI) • - Spectral (SDI), Close et al. 05 • - Angular (ADI), Marois et al. 06 •  Post-processing tools • - LOCI, Lafrenière et al. 07 • - ANDROMEDA,Mugnier et al. 10 • - KLIP/PCA, Soummer et al. 12 Field Rotation VLT/NaCo 1“ (i.e 19AU@19pc)

  12. II- Strategy The art of PSF subtraction • High Contrast at inner angles •  Main limitation (<1.0-2.0’’): Atmospheric & instrumental speckles •  Coronagraphy • - Occulting and Lyot-pupil mask • - 4QP Mask, Boccaletti et al. 08 • - new: PIAAC, ALC, APC& Vortex •  Differential Imaging • - Polarimetric (PDI) • - Spectral (SDI), Close et al. 05 • - Angular (ADI), Marois et al. 06 •  Post-processing tools • - LOCI, Lafrenière et al. 07 • - ANDROMEDA,Mugnier et al. 10 • - KLIP/PCA, Soummer et al. 12 Field Rotation VLT/NaCo 1“ (i.e 19AU@19pc)

  13. II- Strategy Detection Performances High Contrast at inner angles Coronagraphy or SAT-Imaging combined with ADI, SDI (or PDI)  Improved performances inside the IWAs: 0.1-2.0” Detection Limits: H-band Obs. Time ~10min Star, H = 5-6 (d = 30 pc)‏ Detection Limits: H-band; Tobs = 60-90 min Star, H = 5-6 Down to ΔH = 14.0 @1.0”

  14. II- Strategy Detection Performances High Contrast at inner angles Coronagraphy or SAT-Imaging combined with ADI, SDI (or PDI)  Improved performances inside the IWAs: 0.1-2.0” Detection Limits: H-band Obs. Time ~10min Star, H = 5-6 (d = 30 pc)‏ Detection Limits: H-band; Tobs = 60-90 min Star, H = 5-6 Down to ΔH = 14.0 @1.0” d = 30 pc, 10 Myr COND03 Evol. Models Baraffe et al. 03

  15. II- Strategy OptimizedSamples Young, nearby stars Age < 200 Myr . Young, nearby associations Distance < 100 pc . access small sma, . enhanced sensitivity  Spectral Types: AFGKM . AF: More massive EGPs? . M: favorable contrast  V-band < 10.0 – 12.0 . AO-Full Performance limitation > All observed by GAIA NaCo Large Program’s sample, preparatory mission to SPHERE (Chauvin et al. 10)

  16. Outline A New Era for Exoplanet Imaging I- Introduction: Why Imaging? II- Techniques & Strategy III- Results: What can we learn? IV – A New Era: VLT/SPHERE GAIA-ESF Workshop – November, 5th 2012, Torino

  17. IV- Key results Family’s portrait 2M1207 DH Tau AB Pic SCR1845 CHXR 73 GJ 758 CT Cha 1RXJS609 GQ Lup WideorbitPMCs: - low mass KM stars - q = 0.02 – 0.2 or Δ > 200 AU Fomalhaut Hr8799 Beta Pic  CloserPMCs: - A4V-A5V massive primaries - q < 0.005 ; Δ = 8 - 120 AU - CS Disk signatures Ref: Chauvin et al. 04; Itoh et al. 05; Chauvin et al. 05; Biller et al. 05; Luhman et al. 06; Thalmann et al. 09; Lafrenière et al. 08; Neuhauser et al. 05; Schmidt et al. 09; Lagrange et al. 10; Kalas et al. 08; Marois et al. 08,10...

  18. IV- Key results OuterGiantPlanet Population Architecture & Stability Astrometry & Disk/Planet Orbits, dynamical interactions, resonances & long-term evolution Physics of Giant Planets Photometry & Spectroscopy Atmosphere & physical properties Occurrence & Formation Statistical properties (occurrence, planetary host dependency, disk properties) Formation Theories: CA, GI or CF

  19. IV- Key results Physics of GiantPlanets Companion nature?  PlanetSingle-band photometry  Stellar properties: d & age  Evolutionarymodels (Luminosity - Mass) . β Pictoris b, ΔJ = 10.6+-0.3 mag, . 12 Myr @ 19.3 pc, . Mass = 7 – 8 Mjup (“Hot-Start”models) > However, uncertainties in the model predictions > Dependence: formation mechanisms , gas accretion shock & initial conditions Field Rotation VLT/NaCo ADI imaging Marley et al. 07; Mordasini et al. 12 Bonnefoy et al. 12

  20. IV- Key results Physicalproperties Atmosphere  Planet’s SED  Stellar properties: d & age  Synthetic-Grid of spectra  Atmosphericproperties . Radiative transfert code . Dusty Cloud Formation/Sedim. . Mol. opacity / Non-eqChem. βPic b, Teff = 1650 +- 150K, log(g) = 4.0±0.5, FeH = 0.0±0.5, R = 1.3+-0.2 RJup > dusty clouds (Lβ-type) Bonnefoy et al. 12

  21. IV- Key results Orbital Properties & Architecture Imaging Exoplanet’s revolution  Discovery: Nov 2003 ΔL’ = 7.7 mag, sep = 300 +- 15 mas  Monitoring campaign: 2008 - now  Recovery: Oct. 2009 Nov 2003 Oct 2009 Lagrange et al. 09, 10 Bonnefoy et al. 10, Quanz et al. 10 • N VLT/NaCo ADI imaging L’-band, β Pic b • 500 mas • E

  22. IV- Key results Orbital Properties & Architecture Imaging Exoplanet’s revolution •  Discovery: Nov 2003 • . ΔL’ = 7.7 mag, sep = 300 +- 15 mas •  Monitoring campaign: 2008 - now • Recovery: Oct. 2009 • Astrometricfollow-up • . VLT/NaCo monitoring 2003 - 2012 Chauvin et al. 12 • N • E

  23. IV- Key results Orbital Properties & Architecture Constraining the orbit  MCMC Orbital fitting β Pic b, P = 17 - 21 yrs a = 8 - 10 AU e < 0.17 i = 88.5 +- 1.5 deg Ω = 212.5 +- 1.5 deg Chauvin et al. 12 • N • E

  24. IV- Key results Orbital Properties & Architecture Constraining the orbit  Planet – Disk connection . main disk, up to 20’’ (1000 AU), PAMD= 209.5+-0.3deg . β Pic b PAβ Pic b= 212.0+-1.3o > β Pic b in the disk’s warp, Lagrange et al. 12 Main disk Warp • 2“ • N • E • N • E

  25. IV- Key results CA Limit Formation & Evolution  In-situCoreAccretiondoes not workat > 20-30 AU > Core or Disk fragmentation ? Dodson –Robinson et al. 09; Boley et al. 09 > Innerlimitto the Core or Disk fragmentation?  Dynamicalevolution & stability > outward migration (corotation torque), planetscattering & resonances Crida et al. 09; Scharf & Menou 09

  26. Outline A New Era for Exoplanet Imaging I- Introduction: Why Imaging? II- Techniques & Strategy III- Results: What can we learn? IV – A New Era: VLT/SPHERE GAIA-ESF Workshop – November, 5th 2012, Torino

  27. V- A New Era Upcoming instruments (mid-2013),  GPI, Gemini Planet Finder(MacIntosh et al. 08) - Fast-high order adaptive optics system - Interferometricwave front sensing for static aberrations - NIR-IFU + Apodizedpupil Lyot coronagraph  VLT/SPHERE (Beuzit et al. 08) - SAXO, Extreme AO system (ITTM-DM and DTTS, PTTS) - NIR (YJHK): IRDIS (Dual imaging Spectrograph) and IFU 3D-spectroscopy - VIS: ZIMPOL (Imaging Polarimeter) - Coronagraphs: Classical Lyot, A4P and ALC - GTO of 260 nights; 200 devoted to survey 300 nearby stars

  28. V- A New Era SPHERE concept

  29. V- A New Era SPHERE Instruments Coronography: no /4Q / Lyot Rotation at Nasmyth: • Pupil-stab. (instrument fixed wrt tel.) • Field-stab (slit spectro, long DIT…) • No rotation: minimize crosstalk…) AO sensitivity for high contrast: R=9.5 for NIR; R=9 for R; R=7.8 for whole VIS Separation with improved contrast: 2 - 20 λ/D, ie 30-300 mas in R, or 80 – 800 mas in H Mode switching: not VIS and NIR in same night

  30. V- A New Era Observingwith SPHERE • SPHERE Timeline, • Fall 12, Tests @IPAG • March 13 PAE • April 13 Shipping • May 13 Integration @Paranal • July& Dec 13First Light & Commissioning phase1, 2 & 3 • March 14CfP 94, offered to the ESO community • - All offered mode fully supported/documented, • - Calibration & data reduction pipeline • GTO (260 nights over 3 - 5 yrs; 26-40 nights/semester) • > NIRSUR: SPHERE Giant Planet Search (200 nights) • - 400-600 stars observed (Age < 1 Gyr; SpT: AFGKM; < 100-150 pc) • - Occurrence & properties of the giant planet population at wide orbits (> 10 AU)

  31. V- A New Era Synergywith GAIA

  32. V- A New Era Synergywith GAIA SPHERE GAIA ELT-PCS Mesa et al. 11 Kasper et al. 10 Lattanzi & Sozzetti 10 http://exoplanet.eu/

  33. V- A New Era Synergywith GAIA GAIA’s planetary systems About 10 000 EGPs with GAIA for (d < 200 pc, V < 13) stars.  Marginal overlap with SPHERE - favorable cases (very nearby), GAIA > planet’s orbital phase - Follow-up for Photometric/Spectroscopiccharacterization > but, will have to wait for ELT-(IFU & PCS) for systematic study  Outer regions of GAIA’s planetary systems - Could help to constrain GAIA astrometric solutions (long-periods) - Outer planets detection & characterization in synergy with GAIA > Architecture, Dynamical evolution, Stability & Formation To conclude: GAIA will provide a rich list of targets for Imaging surveys

  34. Thank You! GAIA-ESF Workshop – November, 5th 2012, Torino

  35. IV- Key results Physicalproperties Mass determination & related uncertainties  Planet photometry & spectroscopy  Stellar properties: d & age  Evolutionary model predictions . not-calibrated at young ages . Role of initial conditions “Hot-start” (Baraffe et al. 03; Burrows et al. 03) “Cold start” – Core Accretion (Marley et al. 07; Fortney et al. 08) Hot start Hot start Cold start

  36. IV- Key results Physicalproperties Mass determination & related uncertainties  Planet photometry & spectroscopy  Stellar properties: d & age  Evolutionary model predictions . not-calibrated at young ages . Role of initial conditions “Hot-start” (Baraffe et al. 03; Burrows et al. 03) “Cold start” – Core Accretion (Marley et al. 07; Fortney et al. 08) β Pic b 7-8 MJup Hot start Hot start Cold start

  37. IV- Key results Orbital Properties & Architecture Constraining the orbit (MCMC Orbital fitting) • N • E

  38. IV- Key results Orbital Properties & Architecture Disk-Planet connection Oct 2009 • N • 2“ • E • Imaging the innerdisk of β Pictoris • .the main disk, up to 20’’ (1000 AU), PAMD = 209.5+-0.3deg • . The warp-component, 0 – 5’’ (0 – 100 AU), PAW = 212.5 deg • . Whereis the planet? Lagrange et al. (12) • N • 500 mas • E

  39. IV- Key results Orbital Properties & Architecture Disk-Planet connection Nov 2003 Oct 2009 Oct 2009 Main disk • N Warp • 2“ • E • Imaging the innerdisk of β Pictoris • .the main disk, up to 20’’ (1000 AU), PAMD = 209.5+-0.3deg • . The warp-component, 0 – 5’’ (0 – 100 AU), PAW = 212.5 deg • . Whereis the planet? Lagrange et al. (12) • N • 500 mas • E

  40. IV- Key results Orbital Properties & Architecture Disk-Planet connection Nov 2003 Oct 2009 Oct 2009 Main disk • N Warp • 2“ • E • Imaging the innerdisk of β Pictoris • . the main disk, up to 20’’ (1000 AU), PAMD = 209.5+-0.3deg • . The warp-component, 0 – 5’’ (0 – 100 AU), PAW = 212.5 deg • . Planet’s position angle: PAb = 212.0+-1.3 deg • > Probablynot in the main disk, but in the warp… • > Innerwarpeddisksculpted by the planet: (Mb < 20 Mjup ) • N • 500 mas • E Lagrange et al. (12)

More Related