1 / 8

Liner Programming

Liner Programming. Metode Grafis dan Simplex. Program Linear. Persoalan Manajemen umumnya berkenaan dengan : Penggunaan bahan secara efisien Pengalokasian sumber terbatas u/ tujuan yg diinginkan (maximum, minimum, optimum) dan pemilihan alternatif terbaik

seoras
Download Presentation

Liner Programming

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Liner Programming MetodeGrafisdan Simplex

  2. Program Linear • PersoalanManajemenumumnyaberkenaandengan : • Penggunaanbahansecaraefisien • Pengalokasiansumberterbatas u/ tujuanygdiinginkan (maximum, minimum, optimum) danpemilihanalternatifterbaik • Contoh : pimpinaninginmencapaihasilsemaksimalmungkin, makadiabermaksudmencapaipenjualansetinggimungkindengankendala : bahanbaku, tenagatrampil, machine hour, dan modal dangudangterbatassertapermintaanterbatasdansusahlaku

  3. ContohSoal LP • Perusahaan shaderakanmemprediksibarangandalaannyayaituIpoddan Jam-TV. SetiapIpodmembutuhkan 4 jam pengerjaanelektronikdan 2 jam perakitan. Jam-TV membutuhkan 3 jam pengerjaanelektronikdan 1 jam perakitan. Tersediawaktu 240 jam PE dam 100 jam perakitan. SetiapIpodlaba $7 dan Jam-TV $5 • Hitungkombinasi optimum

  4. X1 = JumlahIpod PE = 4 Perakitan = 3 X2 = Jam TV PE = 2 Perakitan = 2 Max Laba = 7X1 + 5X2 Batasan : 1. Maktu PE yang diperlukan≤ waktu yang tersedia 2. WaktuPerakitan yang diperlukan ≤ waktutersedia 3. X1 ≥ 0 4. X2 ≥ 0 Penyelesaian : 4X1 + 3X2 ≤ 240 2X1 + X2 ≤ 100 X2 = 40 X1 = 30

  5. MetodeGrafis X2 100 80 A C X1 B 60

  6. Kombinasiterbaik : A = 0X1 + 80 X2 0 + 80 (5) = $400 B = 50x1 + 0x2 = 50 (7) + 0 = $350 C = 4X1 + 3X2 = 240 2x1 + x2 = 100 X2 = 40 2X1 + 40 = 100 X1 = 30 30X1 + 40X2 = 7(30) + 5 (40) = $420

  7. MetodeGrafis X2 100 80 A C 40 X1 B 30 60

More Related