1 / 65

Delia Hasch

Delia Hasch. review of DVCS measurements. a brief introduction. DVCS: from low to high x : cross sections and asymmetries (selected results). DVCS on nuclei. conclusion & perspectives. workshop on GPDs@COMPASS , CERN, March 04, 2010. GPDs and the spin puzzle. nucleon spin:.

sowards
Download Presentation

Delia Hasch

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Delia Hasch review of DVCS measurements a brief introduction DVCS: from low to high x : cross sections and asymmetries (selected results) DVCS on nuclei conclusion & perspectives workshop on GPDs@COMPASS,CERN, March 04, 2010

  2. GPDs and the spin puzzle nucleon spin: ≈30% ≈zero

  3. GPDs and the spin puzzle nucleon spin: ≈30% ≈zero [X. Ji, 1997] requires orbital angular momentum proton helicity flipped but quark helicity conserved

  4. nucleon tomography [M. Burkardt, M. Diehl 2002] FT(GPD) : momentum space  impact parameter space: probing partons with specified long. momentum @transverse position b T polarised nucleon: spin-orbit correlations d-quark u-quark from lattice

  5. Q2 t the ideal experiment for measuring hard exclusive processes Q2>>, t<<

  6. the ideal experiment for measuring hard exclusive processes high+variable beam energy • hard regime • wide kinematic range high luminosity • small cross sections • measure in 3 kinematic variables simultanously complete event reconstruction  ensure exclusivity … doesn’t exist (yet)…

  7. experimental prerequisites HERA till 2007 • polarised 27GeV e+/e- • unpolarised 920 GeV p • ≈full event reconstruction • polarised 27GeV e+/e- • long.+transv. polarised p, d targets • unpolarised nuclear targets • missing mass/energy technique • 2006/7: data with recoil detector CEBAF

  8. Hall-A experimental prerequisites HERA till 2007 • polarised 27GeV e+/e- • unpolarised 920 GeV p • ≈full event reconstruction • polarised 27GeV e+/e- • long.+transv. polarised p, d targets • unpolarised nuclear targets • missing mass/energy technique • 2006/7: data with recoil detector CEBAF • highly polarised continuous up to 6GeV e- • long. polarised effective p and n targets • missing mass/energy technique

  9. small  high x 0.2-0.5 10-3 10-1 xBj HERA-collider HERMES / JLab 0.02 < xB < 0.4 0.1 < xB < 0.6 10-4 < xB < 0.02 sea quarks & gluons (valence) quarks

  10. small  high x 0.2-0.5 10-3 10-1 xBj HERA-collider HERMES / JLab 0.02 < xB < 0.4 0.1 < xB < 0.6 10-4 < xB < 0.02 sea quarks & gluons (valence) quarks [C. Weiss] see talk by L. Schoeffel

  11. deeply virtual compton scattering DVCS Bethe-Heitler

  12. deeply virtual compton scattering DVCS Bethe-Heitler @H1/Zeus: DVCS≈ Bethe-Heitler • bilinear in GPDs

  13. deeply virtual compton scattering DVCS Bethe-Heitler @H1/Zeus: DVCS≈ Bethe-Heitler @HERMES, JLab: DVCS<< Bethe-Heitler • bilinear in GPDs • linear in GPDs

  14. deeply virtual compton scattering DVCS Bethe-Heitler @H1/Zeus: DVCS≈ Bethe-Heitler @HERMES, JLab: DVCS<< Bethe-Heitler H1/Zeus: LO sea quark + NLO gluon contribution

  15. DVCS & GPDs: caveats • x is mute variable (integrated over):  apart from cross-over trajectory (x=x) GPDs not directly accessible • extrapolation t  0 is model dependent

  16. DVCS & GPDs: caveats • x is mute variable (integrated over):  apart from cross-over trajectory (x=x) GPDs not directly accessible • extrapolation t  0 is model dependent cross sections & beam-charge asymmetry ~ Re(T DVCS ) beam or target-spin asymmetries ~ Im(T DVCS )

  17. selecting exclusive events

  18. exclusivity ≈ 4p acceptance for e and g  p escapes in beam pipe LPS: p tagged sample

  19. exclusivity LPS: p tagged sample e-sample: BH control sample e+e-, J/Y bg sample g-sample: BH + DVCS

  20. exclusivity LPS: p tagged sample e-sample: BH control sample e+e-, J/Y bg sample g-sample: BH + DVCS ( BH + DVCS ) - BH

  21. exclusivity full data sample e-sample: BH control sample e+e-, J/Y bg sample g-sample: BH + DVCS ( BH + DVCS ) - BH

  22. exclusivity via missing mass / energy part of the signal (ep  e’ g X) subtracted very well understood

  23. exclusivity via missing mass / energy part of the signal  D+ ID: transition GPDs (ep  e’ g X) subtracted very well understood  reference samples 2006/7

  24. Hall-A exclusivity via missing mass / energy part of the signal (ep  e’ g X) subtracted very well understood

  25. DVCS cross sections

  26. DVCS cross section [PLB659(2008)] Zeus 99/00 not included [JHEP05(2009)] Q2 range : 1 – 102 GeV2 steep rise with W  hard process

  27. DVCS cross section [PLB659(2008)] • measurement of t –slope: provides absolute normalisation

  28. DVCS cross section [PLB659(2008)] • measurement of t –slope: Zeus (p’ tagged events) provides absolute normalisation [JHEP05(2009)]  universality of slope parameter: point-like configurations dominate <Q2>=8.0 GeV2 Zeus (p’ tagged events) <Q2>=3.3 GeV2

  29. DVCS cross section [PLB659(2008)] • measurement of t –slope: Zeus (p’ tagged events) [JHEP05(2009)] provides absolute normalisation  universality of slope parameter: point-like configurations dominate <Q2>=8.0 GeV2 Zeus (p’ tagged events) <Q2>=3.3 GeV2 b  average impact parameter: @ xB=10-3 xB~10-3

  30. DVCS cross section quantifying the skewing LO: R = GPD / PDF zero skewing  skewing due to Q2 evolution of GPDs

  31. DVCS @small x - outlook • more HERA II data to come: • H1: 2007 • Zeus: so far HERA I only • combined H1 & ZEUS analysis (?) • beam-charge asymmetry @small x : •  access to interference term first result from HERA II … very limited by statistics

  32. Hall-A DVCS interference term

  33. DVCS interference term ~ DsC~cosf∙Re{ H+ xH +… } DsUT polarisation observables: beam target I~Ds  different charges: e+ e-(only @HERA!): U, L U, L, T Unpolarised Longitudinally Transversely polarised

  34. DVCS interference term ~ DsC~cosf∙Re{ H+ xH +… } ~ DsLU~sinf∙Im{H+ xH+ kE} polarisation observables: ~ DsUL~sinf∙Im{H+ xH+ …} I~Ds  different charges: e+ e-(only @HERA!): H H ~ H DsUT~sin(f-fS)cosf ∙Im{k(H- E)+ … } H, E kinematically suppressed @HERMES and JLab energies x = xB/(2-xB ),k = t/4M2

  35. ALU first DVCS signals: ALU -- from interference term -- [PRL87(2001)] CLAS @E= 4.2 GeV  sinf dependence indicates dominance of handbag contribution

  36. call for high statistics JLab: E1-DVCS beam-spin asymmetry [PRL100(2008)] fits of ALU(with d=0) integrated over t

  37. <-t> = 0.18 GeV2 <-t> = 0.30 GeV2 <-t> = 0.49 GeV2 <-t> = 0.76 GeV2 call for high statistics JLab: E1-DVCS beam-spin asymmetry [PRL100(2008)] 3D binning in x, Q2 and t fits of ALU(with d=0) integrated over t

  38. call for high statistics JLab: E1-DVCS beam-spin asymmetry [PRL100(2008)] a ~ Im[F1H]

  39. call for new analysis methods HERMES: combined analysis of charge & polarisation dependent data  separation of interference term + DVCS2 amplitude

  40. call for new analysis methods HERMES: combined analysis of charge & polarisation dependent data  separation of interference term + DVCS2 amplitude ‘classical’ single-charge asymmetry:

  41. call for new analysis methods HERMES: combined analysis of charge & polarisation dependent data  separation of interference term + DVCS2 amplitude ‘classical’ single-charge asymmetry: • charge difference asymmetry: • charge average asymmetry:

  42. call for new analysis methods HERMES: combined analysis of charge & polarisation dependent data  separation of interference term + DVCS2 amplitude beam spin asymmetry:[JHEP11(2009)] regge-ansatz for t-dependence GPD models: VGG bands obtained by varying input parameters bval & bsea between 1 and 8 regge-ansatz for t-dependence Dual-GT

  43. call for new analysis methods HERMES: combined analysis of charge & polarisation dependent data  separation of interference term + DVCS2 amplitude beam spin asymmetry:[JHEP11(2009)]  contribution from DVCS2 term small regge-ansatz for t-dependence Dual-GT

  44. call for new analysis methods HERMES: combined analysis of charge & polarisation dependent data  beam charge asymmetry [JHEP11(2009)] GPD models: VGG regge-ansatz for t-dependence, no D-term regge-ansatz for t-dependence Dual-GT

  45. Hall-A call for high precision data Hall-A: DVCS cross section from interference term

  46. Hall-A call for high precision data Hall-A: DVCS cross section from interference term [PRL97(2006)] [VGG model]

  47. Hall-A call for high precision data Hall-A: DVCS cross section from interference term  Q2 dependence of DVCS coeff.: dominance of tw-2 contribution (handbag diagram ) (however, very limited Q2 range…) [PRL97(2006)]

  48. a word about ‘user friendly’ GPD models VGG:[Vanderhaegen, Guichon, Guidal 1999] • double distributions ; factorised or regge-inspired t-dependence • D-term to restore full polynomiality • skweness depending on free parameters bval & bsea • includes tw-3 (WW approx) Dual:[Guzey, Teckentrup 2006, 2009] • GPDs based on infinite sum of t channel resonances (minimal: truncated k=[0,2]) • factorised or regge-inspired t-dependence • tw-2 only

  49. describes well AC, AUT,L and ALL data • fails for ALU • Ac favours ‘no D-term’  contradicts cQSM & lattice results • describes well kine dependence of charge and spin asymmetries • after correction in calculation: magnitude off by factor 2-4 see talk by D. Muller a word about ‘user friendly’ GPD models VGG:[Vanderhaegen, Guichon, Guidal 1999] • double distributions ; factorised or regge-inspired t-dependence • D-term to restore full polynomiality • skweness depending on free parameters bval & bsea • includes tw-3 (WW approx) Dual:[Guzey, Teckentrup 2006, 2009] • GPDs based on infinite sum of t channel resonances (minimal: truncated k=[0,2]) • factorised or regge-inspired t-dependence • tw-2 only • call for new, more sophisticated parametrisations of GPDs & new approaches … on the way:- generalisation of Mellin transform technique &dispersion relations - ‘model independent fitter’…

  50. …nevertheless: first attempts to constrain Jq observables sensitive to E: (Jq input parameter in ansatz for E) • DVCS AUT : HERMES • nDVCS ALU : Hall A • r0 AUT : HERMES

More Related