400 likes | 718 Views
بسم ا... الرحمن الرحيم. درس کنترل ديجيتال مهر 1391. دکتر حسين بلندي/ دکتر سید مجید اسماعیل زاده / دکتر بهمن قربانی واقعی. فصل پنجم. ”تحليل فضاي حالت“. مقدمه.
E N D
بسم ا... الرحمن الرحيم درس کنترل ديجيتال مهر 1391 دکتر حسين بلندي/ دکتر سید مجید اسماعیل زاده / دکتر بهمن قربانی واقعی
فصل پنجم ”تحليل فضاي حالت“ مقدمه در فصل هاي سوم و چهارم تمركز بر روي قيد Conventional براي تحليل و طراحي سيستم هاي كنترل بود. اينگونه روش هاي كنترلي از قبيل مكان هندسي ريشه ها و پاسخ فركانسي فقط براي سيستم هاي SISO كارآيي دارند. اگرچه اينگونه متدها بسيار ساده و داراي محاسبات اندكي مي باشند اما كارآئيشان براي سيستم هايمستقل از زمان SISOمي باشد. در اينگونه سيستم ها تمركز بر روي ارتباط بين خروجي و ورودي سيستم يعنيتابع تبديل يا تابع تبديل پالسيسيستم مي باشد. اينگونه روش ها براي سيستم هاي غيرخطي مگر بسيار ساده و همچنين براي سيستمهايOptimalو سيستم هائيكه در بسياري مواقع وابسته به زمان يعني Time-Varying يا غيرخطي هستند كارآيي نداشتند.
در سيستم هاي كنترل مدرن، سيستم ها داراي تعدادي ورودي و خروجي هستند كه گاهي بصورت پيچيده بهم مربوط مي باشند. لذا براي تحليل و طراحي اينگونه سيستم ها بايد از روابط خسته كننده رياضي عدول نموده و يكحالت سيستماتيكرا اثبات نمود. • بيشتر سيستم هاي كنترل مدرن به سيستم هاي كنترل ديجيتال تبديل مي شوند. در نتيجهمتدهاي فضاي حالت،بهترين روش ها براي بررسي، تحليل و طراحي اينگونه سيستم هاست. • در واقع فضاي حالت به طراح اين فرصت را مي دهد كه سيستم را با توجه به شاخص هاي كيفيت عملكردمورد طراحي قرار دهد. همچنين در اين متدها طراحي براي يك كلاس از ورودي ها بجاي يك ورودي خاص انجام مي پذيرد.
تعاريف Stateحالت :حالت يك سيستم ديناميك عبارت است از كوچكترين مجموعه از متغيرها (متغيرهاي حالت) كه داشتن اين متغيرها در و داشتن ورودي براي ،با هم مي توانند رفتار سيستم را براي هر زمان ، مشخص و معين نمايند. بايد توجه داشت كه مفهوم حالت فقط براي سيستم هاي فيزيكي بكار گرفته نمي شود بلكه براي هر سيستم مانند سيستم هاي Biological، Economical، و اجتماعي نيز بكار گرفته مي شود. متغيرهاي حالت = State Variables :عبارتند از كوچكترين مجموعه اي از متغيرها كه حالت=State يك سيستم ديناميك را تشكيل مي دهند. اگر حداقل n متغير را مورد نياز داريم تا رفتار سيستم را تعريف كنيم اين n متغير را متغيرهاي حالت مي ناميم.
بردار حالت State Vector : اگر n متغير حالت براي تعريف كامل رفتار يك سيستم مورد نياز است، آنگاه n متغير حالت را مي توان، n جزء بردار دانست. اين بردار را بردار حالت مي ناميم. فضاي حالت (State Space):فضاي n بعدي كه محورهاي مختصات آن عبارتند از: را فضاي حالت مي ناميم. هر حالت را مي توان توسط يك نقطه در فضاي حالت نمايش داد. معادلات فضاي حالت:در معادلات فضاي حالت با سه متغير براي مدل كردن يك سيستم روبرو هستيم: متغيرهاي ورودي، متغيرهاي خروجي و متغيرهاي حالت.
معادلات فضاي حالت براي يك سيستم وابسته به زمان،Time-Varying ، گسسته (خطي يا غيرخطي) معادلات فضاي حالت عبارتند از: و معادله خروجي عبارت است از: براي سيستم هاي گسسته زمان خطي وابسته به زمان، معادلات حالت و معادله خروجي عبارت است از:
بردار حالت بردار خروجي بردار ورودي ماتريس حالت ماتريس ورودي ماتريس خروجي ماتريس انتقال مستقيم و در نمايانگر Time-Varyingبودن حضور سيستم است.
اگر سيستمTime-Invariant يا ثابت باشد: State Space Representation of Discrete-Time Systems سيستم كنترل Discreteزير را در نظر بگيريد. تابع تبديل پالسي (*) عبارت است از:
يا چندين روش براي بدست آوردن معادلات فضاي حالت اينتابع تبديل پالسي وجود دارند: 1)برنامه سازي مستقيم Controllable Canonical 1- Direct Programming Method 2)برنامه سازي تو در تو Observable Canonical 2- Nested Programming Method 3)گسترش كسرهاي جزئي Jordan Canonical 3- Partial Fraction Expansion Method
از اين معادله مي توان دو معادله زير را بدست آورد:
را مي توان اينگونه نوشت: معادله بنابراين:
é ù 0 1 0 0 L ( ) ( ) + é ù é ù é ù x k 1 x k 0 ê ú 1 1 0 0 1 0 ê ú ê ú ê ú L ê ú ( ) ( ) + x k 1 x k 0 ê ú ê ú ê ú ê ú ( ) 2 2 = + u k M M M M M ê ú ê ú ê ú ê ú M M M ê ú ê ú ê ú ê ú 0 0 0 1 L ê ú ê ú ê ú ê ú ( ) ( ) + x k 1 x k 1 ë û ë û ë û ê ú n n - - - - a a a a L ë û - - n n 1 n 2 1 مدل فضای حالت
Controllable Canonical Form • مي توان متغيرهاي حالت را بشرح زير تعريف نمود:
اين متغيرها بصورت زير بهم مرتبط مي شوند:
Nested Programming Method Or Observable Canonical Form • در اين متد هم نيازي به فاكتور كردن مخرج تابع تبديل پالس نيست.
را مي توان اينگونه نوشت: بر اين اساس معادله خواهيم داشت: با قرار دادن معادله و ضرب طرفين در در
از معادلات فوق در جهت معكوس خواهيم داشت: با عكس تبديل
مي توان متغيرهاي حالت را بشرح زير تعريف نمود:
Partial-Fraction-Expansion • در اين روش مخرج تابع تبديل پالسي را بصورت فاكتوري در مي آوريم.
حالت اول- تمام قطبها متمايز هستند: Let’s define:
حالت دوم- وجود قطبهايتکراري: ، مرتبه تكرار شده و بقيه قطب ها • فرض كنيد كه قطب همگي متمايز باشند:
بنابراين: Let’s define: و
معادله حالت اول با حالت بعدي خود داراي ارتباط زير هستند: عكس تبديل بگيريم آنگاه: لذا اگر از معادله
Non-Uniqueness of State-Space Representation همانگونه كه ملاحظه شد، مي توان با توجه به يك تابع تبديل پالسي، فرم هاي مختلفي از معادلات حالت را تعريف نمود. به هر حال كليه فرم هاي ارائه شده با توجه به Similarity Transformation به هم مربوطند: Consider: Let’s define: Where is a non-singular matrix Exists
دو ماتريس مشابه يكديگرند اگر : 1) A و B داراي يك مرتبه باشند. 2) ماتريس بنحوي وجود داشته باشد كه: خواص: 1) داراي دترمينان مساوي هستند. 2) داراي معادله مشخصه برابر هستند. 3) داراي مقادير ويژه مساوي مي باشند. بايد توجه داشت كه: 1) اگر قطب هاي G متمايز باشند: 2) اگر قطب هاي G تكراري باشند: