1 / 34

Generaliserade linjära modeller, individvariationer och Rasch-modeller

Generaliserade linjära modeller, individvariationer och Rasch-modeller. Sture Holm 2011-11-30. L injära modeller. Linjära modeller = parameterlinjära modeller Parametrar, ”inställningspunkter”, kontinuerliga eller diskreta Linjära ekvationssystem inga svåra numeriska problem

stedman
Download Presentation

Generaliserade linjära modeller, individvariationer och Rasch-modeller

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Generaliserade linjära modeller, individvariationer och Rasch-modeller Sture Holm 2011-11-30

  2. Linjära modeller • Linjära modeller = parameterlinjära modeller • Parametrar, ”inställningspunkter”, kontinuerliga eller diskreta • Linjära ekvationssystem inga svåra numeriska problem • Lättförståelig additivitet • Klassisk normalteori

  3. Generaliserade linjära modeller • Fördelning, fördelningsparametrar, länkfunktion, linjärmodell • Exempel: Poissonfördelningλ, positiv parameter, loglänk • Exempel: Binomialfördelning p, parameter i intervallet (0;1), logistisk länk

  4. Individvariation i linjär modell • Oberoende och beroende • Additiva felkomponenter i linjära modeller • Alltid positiv korrelation i modellen ! • Variationer inom individer och variationer mellan individer • Stegvisa ”övergripande variationer” går in i flera observationer • Försöksplaneringssynpunkter

  5. Individvariation i generaliserad linjär modell • Inte lika självklart • Relation mellan variation inom och mellan • Slumpvariansen i fördelningen behöver inte vara konstant i linjärmodellen ! • Transformationen i generaliserade modellen behöver inte ge approximativt konstant varians

  6. Variabeltransformationer för konstant varians • Rottransformation ger approximativt konstant varians i Poisson • Poissonλ=10, μ=3.12, σ=0.51 • Poissonλ=25, μ=4.97, σ=0.50 • Basal grundnivå ? • Additivt tillskott i undersökningsgrupp • Individvariation proportionell mot roten ur λ ? • Binomialfördelningarksin-transformation ger approximativt konstant varians. Inte så bra för additiva tillskottsmodeller?

  7. Lognormalfördelning • Positiva variabler, logaritmen normalfördelad • Oberoende multiplikativa effekter • Större varians för större variabler • Additiva effekter i normalmodellen är multiplikativa effekter för originalvariablerna • Ett naturligt basval för positiva variabler, doch inte livslängdsvariabler

  8. Individvariation kan ge ökad varians • I Poisson- och binomialfördeningen syns individvariationen som ökad varians • Poissonfördelning med λ=25, varians 25 • 100 observationer på individer med egna Poissonparametrar normala μ=25, σ=6 empirisk varians 59.4. • Klart större än 25, tyder på individvariation • Kan man få minskad varians i någon praktisk situation ?

  9. I enstaka indikatorvariabler syns inte individvariationer • Summan av 100 indikatorobservationer med p=0.6 har varians 4.9 • Med individer som har 50 % sannolikhet för p=0.4 och p=0.8 har en slumpmässig individ också sannolikheten 0.5∙0.4+0.5∙0.8=0.6 och samma varians 4.9 • Gäller på samma sätt även för kontinuerliga fördelningar för individeffekter (väntevärdet är lika med effektiva p-värdet)

  10. Samspel mäter individvariation • Två indikatorvariabler mäts för alla individer • Indikation på individvariation om

  11. Binomiala och multinomialafördelningar 1. Ej upprepade (0,1) 2. Flera lika eller olika (0;1) inom individ 3. Ej upprepad kategori-fördelning 4. Upprepad dito 5. Ej upprepad fördelning för ordnade kategorier 6. Upprepad dito Principiellt ingen individinformation i fallen 1, 3 och 5

  12. Grundkomponenten i Rasch-modellerna • En sannolikhet p beror av individeffekt Z som

  13. Kan inte i sig själv identifieras • Konstant sannolikhet utan variation och en fördelning (frekvensfunktion f(z)) med individeffekter kan inte särskiljas om • Till exempel gruppskillnader ej mätbara ( och eller två fördelningar ??)

  14. Raschmodel….represents the structurewhich data shouldexhibit in order to obtainmeasurements…….different from statisticalmodelling…. • Raschmodel…..theobjective to obtain data whichfit the model. • Raschmodel is not altered to suit data. Instead the method of assessmentshould be changed… • (grundbeskrivning i Wikipedia)

  15. What is a Rasch Analysis? The Rasch model, where the total score summarizes completely a person's standing on a variable, arises from a more fundamental requirement: that the comparison of two people is independent of which items may be used within the set of items assessing the same variable. Thus the Rasch model is taken as a criterion for the structure of the responses, rather than a mere statistical description of the responses. For example, the comparison of the performance of two students' work marked by different graders should be independent of the graders. (Introduction in rasch-analysis.com)

  16. Rasch-analysen förutsätter en ”endimensionell” styrvariabel • Äldre människors livskvalitet • Kan lösa normalsvåra korsord • Kan gå en tur i skogen för att plocka svamp • Är det rimliga resultat av en och samma endimensionella styrvariabel för att mäta livskvalitet ?

  17. Imputering används ofta i program • This is how many specific-purpose statistical packages prepare the raw data for IRT analysis. These packages set aside any items or persons that provide no useful information for the analysis. They analyze the IRT model with the remaining data. From the solutions derived from the remaining data, these packages extrapolate to come up with estimates for items and persons first set aside. (www.unt.edu/rss/rasch_models)

  18. Logittransformationen ger observationer i oändligheten för de maximala och minimala originalobservationerna • Alternativa varianter? Avrundningsprincip för empiriska observationer? ”Delningstal” med en enhet mer? Jämför ordnade statistikor. • Om jag är 176 cm lång, hur lång är jag då? • N kontinuerliga likformiga (0,1). Den ordnade nummer j har väntevärdet j/(N+1)

  19. Principförklaring av hur gemensam modell kan påverka • KONTROLL BEHANDLING • Dubbel förekomst (uppe till höger) har större andel än oberoende förklarar (1.4 resp 7.2). Indikerar individvariation. Gemensam modell ger ungefär balans mellan förekomsterna. Mellanfallen ((0,1) och (1,0)) skattas som ganska lika sannolika i Rasch-modellen.

  20. Typisk individvariation för två ordningsvariabler • Över oberoendefallet nära diagonalen och under oberoendefallet långt därifrån (positivt samspel)

  21. Raschmodellen för ordnade kategorier • Sannolikheten för kategori j • där är en konstant, en individparameter • en ”stegparameter” och en normering för individen. • Vid flera ordnade variabler alla parametrar byts utom individparametern .

  22. Figur över Raschmodellen för ordnade kategorier

  23. För en enda ordnad kategorivariabel kan inte individeffekten skiljas från fördelningen på kategorier. • ”Tänka-efter”-exempel: • Kategorifördelning 0.2, 0.3, 0.4, 0.1 med 10% ”grannspill” kan inte skiljas från fördelningen • 0.2-0.02+0.03=0.21, 0.3-0.06+0.02+0.04=0.30 • 0.4-0.08+0.03+0.01=0.36, 0.1-0.01+0.04=0.13

  24. För samma individer i fristående 0-1-försök kommer individeffekten in i samvariationen • För en ordnad kategorivariabel är samvariationen given av strukturen (kategoriresultat uteslutande, kumulativa resultat implicerande)

  25. Principskillnad på summaskala och ordningsskala • Ordningsskala uteslutande fall 5 möjligheter • Summaskala 16 möjligheter • 5 summor

  26. Logistiska metoder medkumulativa sannolikheter för ordningsvariabler • För kumulativa sannolikheten för kategori j och bakgrundsvariabel x • Man kan arbeta med alla ”brytningspunkter” simultant (Agresti) • Eller betingade ”övergångssannolikheter” som i livslängdsproblem (McCullagh)

  27. Stokastisk ordning • Y är minst lika stor som X om för alla z

  28. Inte lätt att genomskåda i massfördelning

  29. Lehmann-alternativ • Exponent på ”överlevnadssannolikhet” • Tendens till värden över norm för och tendens till värden under norm för • Koppling till Wilcoxon-parametern fundamentalt ickeparametriskt mått

  30. Separata direktberäkningar Kontroll Behandling och analogt för övriga.

  31. Direkta skillnader mellan behandling och kontroll eller skillnader i logitskala genom räknelagar. Information om varje item och möjlighet till samtidig utsaga om båda.

  32. Ett enkelt exempel • Kontroll Behandling • ”Radskillnad” 0.30-0.10 = 0.20 • Varians 0.0030 (SE 0.055) • ”Kolonnskillnad” 0.24-0.16=0.08 • Varians 0.0032 (SE 0.056) • Kovarians 0.00062 (positiv !) • Ingen modell för eventuell individvariation

  33. Tillämpningssynpunkter på modellbyggnad och modellval • Fundamentala grundkarakteristika för data måste man få in. Diskret eller kontinuerlig, positiv, betingade bidrag osv. • Klassiska modeller med närhetskomplettering, andragradsterm, beroende osv. • Ockhams rakkniv, så enkelt som möjligt (för både analys och förstående) • ANALYSERA MÅLSÄTTNINGEN och inrikta modell och analys på den.

  34. Några få författare och årtal om man vill fördjupa sig • Rasch G. (Berkeley symposium 1961) • Andrich D. (Biometrics1979) • Andersen E.B. (ScandJourn Stat 1982) • Tjur T (ScandJourn Stat 1982) • Agresti A. Categorical Data Analysis. (Wiley 1990) • McCullagh P. (J Roy Stat Soc 1980) • McCullagh P, Nelder J.A. GeneralisedLinearModels. (Chapman and Hall 1983)

More Related