1 / 14

LOS NÚMEROS RACIONALES

LOS NÚMEROS RACIONALES. LOS NÚMEROS RACIONALES. REPASA: Los conceptos básicos de números racionales (Fracciones, operaciones con fracciones, números decimales, operaciones con decimales, etc.) haciendo CLIC en el icono (FRACCIONES Y NÚMEROS RACIONALES).

sydnee
Download Presentation

LOS NÚMEROS RACIONALES

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. LOS NÚMEROS RACIONALES

  2. LOS NÚMEROS RACIONALES REPASA: Los conceptos básicos de números racionales (Fracciones, operaciones con fracciones, números decimales, operaciones con decimales, etc.) haciendo CLIC en el icono (FRACCIONES Y NÚMEROS RACIONALES) . RECUERDA: Los números racionales, son aquellos que se pueden expresar en forma de fracción. Además, cada fracción puede venir expresado por un número decimal, y viceversa.

  3. Para convertir una fracción en un número decimal, basta con que efectuemos la división entre el numerador y el denominador. CONVERSIÓN DE UNA FRACCIÓN EN UN NÚMERO DECIMAL Ejemplos: Los números que se obtienen al convertir una fracción en decimal, pueden ser: DECIMAL EXACTO.- Si tiene un número finito o nulo de cifras decimales Ejemplos: PERIÓDICO PURO.- Cuando tiene infinitas cifras repetidas (periodo) a partir de la coma decimal. Ejemplos: PERIÓDICO MIXTO.- Cuando tiene infinitas cifras repetidas (periodo), pero a partir alguna posición posterior a la coma decimal. Ejemplos:

  4. Para convertir un DECIMAL EXACTO D, en fracción. Si tiene n cifras decimales, se efectúan las operaciones: CONVERSIÓN DE NÚMERO DECIMAL A FRACCIÓN Ejemplo: Para convertir un DECIMAL PERIÓDICO PURO D, en fracción. Si el periodo tiene n cifras decimales, se efectúan las operaciones: Ejemplo: Para convertir un DECIMAL PERIÓDICO MIXTO D, en fracción. Si periodo tiene n cifras decimales, a partir de la posición m decimal, se efectúan las operaciones: Ejemplo:

  5. LOS NÚMEROS IRRACIONALES Los números irracionales (“que estudiaremos en cursos posteriores”), son aquellos que no se pueden poner en forma de fracción, o si vienene expresados en forma decimal, son no periódicos y tienen infinitas cifras decimales, como por ejemplo: 0,10100100010000100000 … 3,141592635 …  2

  6. Mas ayuda del tema de la página Matemática de DESCARTES del Ministerio de Educación y ciencia(http://recursostic.educacion.es/descartes/web/)En la siguiente diapósitiva

  7. Mas ayuda del tema de la página Matemática de GAUSS del Ministerio de Educación y ciencia(http://recursostic.educacion.es/gauss/web)En la siguiente diapósitiva

  8. Mas ayuda del tema de la página lasmatemáticas.es Videos del profesorDr. Juan Medina Molina(http://www.dmae.upct.es/~juan/matematicas.htm)En la siguiente diapósitiva

  9. Mas ayuda del tema de la página GeoGebraTube(figuras de GeoGebra)(http://www.geogebratube.org/)En la siguiente diapósitiva

More Related