150 likes | 375 Views
FUERZAS Y PRESIÓN. Fuerzas y materiales. Física y Química 4º ESO: guía interactiva para la resolución de ejercicios. I.E.S. Élaios Departamento de Física y Química. Ejercicio 1 Ejercicio 2 Ejercicio 3 Ejercicio 4 Ejercicio 5 Ejercicio 6 Ejercicio 7 Ejercicio 8 Ejercicio 9
E N D
FUERZAS Y PRESIÓN Fuerzas y materiales Física y Química 4º ESO: guía interactiva para la resolución de ejercicios I.E.S. Élaios Departamento de Física y Química
Ejercicio 1 Ejercicio 2 Ejercicio 3 Ejercicio 4 Ejercicio 5 Ejercicio 6 Ejercicio 7 Ejercicio 8 Ejercicio 9 Ejercicio 10 Índice • Materiales plásticos y elásticos • Fuerzas y estructuras I.E.S. Élaios Departamento de Física y Química
Ayuda Un material es plástico si la deformación que le provoca una fuerza se mantiene cuando la fuerza deja de actuar. Un material es elástico si recupera la forma original cuando la fuerza que lo deforma deja de actuar. Hay objetos elásticos que, al ser estirados, experimentan un alargamiento que es proporcional a la fuerza aplicada. Decimos que dichos materiales obedecen a la ley de Hooke. Esta ley se puede expresar matemáticamente por medio de la ecuación siguiente: F = k x donde F es la fuerza aplicada; x, el alargamiento, y k la constante de elasticidad. Recuerda que dos magnitudes son directamente proporcionales cuando su cociente es constante y que son inversamente proporcionales cuando su producto es constante. Por otro lado, de la expresión matemática de la ley de Hooke, podemos escribir: F/x = k (constante), lo que significa que la fuerza y el alargamiento son directamente proporcionales. Además, si la fuerza es constante, también lo es el producto k · x, lo que nos indica que, en ese caso, la constante de elasticidad y el alargamiento son inversamente proporcionales. I.E.S. Élaios Departamento de Física y Química
Ayuda • Un edificio, un puente, un andamio y un esqueleto son ejemplos de estructuras. Todas esta • estructuras están sometidas a fuerzas, las cuales se suelen clasificar según el efecto que • producen. Así, se habla de: • fuerzas de compresión, que aplastan o comprimen un objeto; • fuerzas de tensión, que estiran un objeto; • fuerzas de torsión, que tuercen un objeto; • fuerzas de flexión, que doblan un objeto; • fuerzas de cizallamiento, que rasgan un objeto. • Las estructuras se diseñan de forma que puedan resistir las fuerzas que actúan sobre ellas y • suelen estar formadas por elementos sencillos, como vigas, pilares, triángulos, tubos y cables. I.E.S. Élaios Departamento de Física y Química
Si la fuerza es suficientemente grande, se puede romper. Si la fuerza es suficientemente grande, se deforman de manera permanente. • Clasifica los materiales siguientes en elásticos y plásticos. • De la lista de materiales elásticos que has elaborado, indica los que son difíciles de clasificar porque son “elásticos hasta cierto punto”. 1. # Contesta al apartado a). # Contesta al apartado b). E • Vidrio • Madera • Cartón • Papel • Barro • Plastilina • Espuma plástica • Algodón • Cobre • Masilla E E E P P E E E P I.E.S. Élaios Departamento de Física y Química
3,7 N 22, 5 cm En un experimento escolar, los alumnos de 4º de E.S.O. C estudiaron el alargamiento de un muelle de acero al ser sometido a distintas fuerzas. Los resultados se muestran en la tabla adjunta.a) Representa gráficamente la fuerza frente al alargamiento. ¿Qué figura geométrica se obtiene?b) Justifica por qué la fuerza y el alargamiento son directamente proporcionales.c) Calcula la constante de proporcionalidad. Escribe la expresión matemática que relaciona la fuerza con el desplazamiento. 2. # Contesta al apartado a). En todo experimento es inevitable la existencia de imprecisiones (errores, lo llaman algunos). Por lo tanto, lo importante es ana- lizar la tendencia de la nube de puntos. Vemos que es una recta. # Contesta al apartado b). Debido a que en la representación gráfica se ha obtenido una recta, podemos escribir: F = constante · x, es decir, F/x = constante, de donde se deduce que la fuerza (F) y el alargamiento (x) son directamente proporcionales. # Contesta al apartado c). La constante de proporcionalidad coincide con el valor de la pendiente de la recta: k = 3,7/22,5 = 0,164 N/cm. Por lo tanto, F = 0,164 x. I.E.S. Élaios Departamento de Física y Química
Algunos estudiantes de 4º E.S.O. han investigado si los materiales siguientes siguen la ley de Hooke: un muelle de acero, una goma elástica y un muelle de cobre casero (obtenido enrollando un hilo de cobre alrededor de un lápiz). Con los resultados obtenidos se ha elaborado los gráficos que se muestran a continuación. ¿Qué materiales siguen la ley de Hooke? ¿En qué material se cumple la ley de Hooke “hasta cierto punto”? 3. J L K Siguen la ley de Hooke los materiales para los cuales la fuerza y el alargamiento son directamente proporcionales o, dicho de otro modo, los materiales para los cuales el gráfico fuerza-alargamiento es una recta. Esta condición se cumple claramente para el muelle de acero, no se cumple para la goma elástica y se verifica para pequeños alargamientos en el muelle de cobre, justamente antes de que comience su deformación permanente. I.E.S. Élaios Departamento de Física y Química
En el estudio experimental del comportamiento de un muelle se ha obtenido los resultados abajo indicados.a) Completa la tabla y elabora el gráfico fuerza-alargamiento. ¿Se obtiene alguna conclusión?b) Halla el valor de la constante de elasticidad del muelle.c) ¿Qué fuerza hay que aplicar al muelle para que su longitud sea de 27 cm? Si se aplica al muelle una fuerza de 27 N ¿cuál será su alargamiento? 4. # Contesta al apartado a). Se deduce que la fuerza y el alargamiento son directamente proporcio- nales: el muelle se rige por la ley de Hooke. # Contesta al apartado b). El valor de la constante de elasticidad k coincide con el de la pendiente de la recta: k = 50/20 = 2,5 N/cm. # Contesta al apartado c). Si L = 27 cm, entonces x = 7 cm y F = 2,5 (N/cm) · 7 cm = 17,5 N. Si F = 27 N, entonces x = F/k = (27 N)/(2,5 N/cm) = 10,8 cm. I.E.S. Élaios Departamento de Física y Química
De la ley de Hooke, deducimos que: Conocido el valor de k, es posible contestar ahora a los dos apartados anteriores recurriendo directamente a la ley de Hooke: a) b) Un muelle que sigue la ley de Hooke se alarga 10 cm cuando se le aplica una fuerza de 5 N.a) ¿Cuál será el alargamiento si la fuerza aplicada es de 12 N?b) ¿Qué fuerza será necesario aplicar para que el alargamiento sea de 8 cm?c) Halla el valor de la constante de elasticidad del muelle. 5. # Recuerda los criterios de proporcionalidad en la Ayuda y contesta al apartado a). # Contesta al apartado b). # Contesta al apartado c). I.E.S. Élaios Departamento de Física y Química
La fuerza que estira el muelle es el peso de la partícula: P = m·g = 0,5 kg·10 N/kg = 5 N. Se observa que el alargamiento es x = 0,2 m. Por lo tanto, Por la ley de Hooke, A un muelle que cuelga verticalmente le añadimos en su extremo libre una partícula de 500 g de masa, con lo que el muelle se estira (ver la animación).a) Calcula la constante de elasticidad del muelle.b) ¿Qué fuerza, estando la partícula colgada, hay que aplicar para que el muelle se alargue otros 10 cm? 6. # Piensa qué fuerza estira al muelle y contesta al apartado a). 10 cm 20 cm 30 cm 40 cm # Contesta al apartado b). 50 cm 60 cm I.E.S. Élaios Departamento de Física y Química
¡ Piensa ! Las estructuras se diseñan de forma que puedan resistir las fuerzas que actúan sobre ellas y suelen estar formadas por elementos sencillos, como vigas, pilares, triángulos, tubos y cables. Completa el siguiente texto, referido a fuerzas y estructuras. 7. Una es un trozo de material fuerte, más largo que ancho, dispuesto horizontalmente para sostener cargas. Cuando se coloca un objeto encima de una viga, ésta tiende a doblarse: el lado inferior se estira (fuerza de ) y el lado superior se comprime (fuerza de ). Las vigas se rompen si la fuerza de es demasiado grande. Una viga que se aguanta sólo por un extremo y que por el otro soporta una carga es una viga . La flexión de una viga se puede evitar si, por ejemplo, se pone un debajo y en medio. Los pilares son los elementos que soportan más carga, estando sometidos a fuerzas de . Normalmente, se construyen con hormigón y acero, ya que son mate- riales que soportan muy bien la . El acero es más denso y más caro que el hormigón. Por eso se construyen pilares huecos, es decir, , y de esta manera se ahorra mucho material. Algunas estructuras, como las torres de alta tensión, están hechas con barras sólidas que forman . Las barras que hacen de unión están sometidas a fuerzas de , y las otras, a fuerzas de . Son estructuras muy fuertes y rígidas. Los sufren la acción de las fuerzas de . Se pueden encontrar en construcciones muy grandes, como los puentes colgantes. viga tensión compresión tensión voladiza pilar compresión compresión tubos triángulos tensión compresión cables tensión I.E.S. Élaios Departamento de Física y Química
A continuación se presenta una relación de algunas estructuras muy conocidas.Se pide que asocies cada una de ellas con los términos: viga voladiza, tubo o triángulo. 8. Balcones Andamios Viga voladiza Torres de alta tensión Bicicletas Escalera hecha con peldaños empotrados en la pared por uno de sus lados Tubo Grúas Huesos Estructuras que aguantan el techo de las naves Triángulo Cañas Repetidores de TV I.E.S. Élaios Departamento de Física y Química
Di qué tipo de fuerzas actúan:a) sobre un ciprés del patio empujado por el cierzo.b) en los brazos, cuando un profesor bajito intenta escribir en la parte superior de la pizarra.c) al escurrir las toallas empapadas tras una tormenta.d) sobre la banqueta en la que se sienta un elefante durante una actuación circense. 9. ¡ Yo, también ! Soy Blaise Pascal. ¿Queréis saber la respuesta? a) flexión; b) tensión; c) torsión; d) compresión. I.E.S. Élaios Departamento de Física y Química
Las Fuentes Almozara Santiago Tercer Cinturón Piedra Tercer Milenio Hierro Pasarela Clasifica los puentes, cuyas fotografías se muestran más abajo, en las siguientes categorías: puente de viga (sin o con pilares), puente de viga en celosía, puente sostenido con cables, puente suspendido o puente con arco (superior o inferior). 10. Puente con un arco Puente con un arco (superior) Puente con dos arcos (inferiores) Puente de viga con pilares Puente con arcos Puente sostenido con cables Puente de viga con celosía Puente suspendido I.E.S. Élaios Departamento de Física y Química