490 likes | 719 Views
Manipulation d’atomes par laser et métrologie des constantes fondamentales. Saïda GUELLATI-KHELIFA. Laboratoire Kastler Brossel (CNRS-UPMC-ENS) Conservatoire National des Arts et Métiers. L’atome est universel Appareil de mesure universel. Interroger un seul atome ?.
E N D
Manipulation d’atomes par laser et métrologie des constantes fondamentales Saïda GUELLATI-KHELIFA Laboratoire Kastler Brossel (CNRS-UPMC-ENS) Conservatoire National des Arts et Métiers
L’atome est universel Appareil de mesure universel
Nv T Agitation thermique Dispersion en vitesse Comment se procurer les atomes pour une expérience de physique atomique? V = 700 m/s SOLUTION Refroidir les atomes par laser T. W. Hänsch and Schawlow, Opt. Comm. 13, 68 (1975) D. Wineland and H. Dehmelt, Bul. Am. Phys. Soc. 20, 637 (1975)
Effet « mécanique » de la lumière sur les atomes Manifestation macroscopique Kepler 1619
Ee – E f = h n Dv = ħ k /M = vr Photon (ħk, hn) Ee Ee Ee Ef Ef Ef Photon (ħ k, hn) Effet « mécanique » de la lumière sur les atomes Absorption + émission spontanée
Atome + Laser : Force de pression de radiation Accélération = 100 000 g
Ralentissement d’un jet atomique par balayage de fréquence Condition de résonance wL - kL v (z) = wat
Milieu « optiquement » visqueux Mélasse optique Refroidissement Doppler n < nat n < nat Force de friction F = - a V
m = -1 m = 0 m = +1 e (J = 1) s+ s - f (J = 0) m = 0 position Piége magnéto-optique F = - a V – b r Mélasse à 3D Effet Doppler Piégeage Effet Zeeman
Quelques ordres de grandeurs Piège + refroidissement Doppler et sub-Doppler n = 1010 atomes/cm3 T ≈quelques mKelvin
• Horloge atomique • Mesure de la constante de structure fine • Interférométrie atomique
Oscillateur à Quartz Multiplicateur de fréquence Boucle de rétroaction Signal d’interrogation Signal d’erreur Résonateur atomique Ee P(n) Réponse atomique n Ef n0 n l’Horloge atomique La seconde est la durée de 9 192 631 770 périodes de la radiation correspondant à la transition entre les deux niveaux hyperfins de l’état fondamental de l’atome de Césium
Principe de double interrogation: Ramsey Four détecteur
A la quête de l’exactitude des expériences de dimensions surhumaines
Fontaine atomique == un jet atomique vertical Fontaine atomique de Zacharias (MIT 1953)
Nv V = 100 m/s La hauteur de la fontaine 500 m
Fontaine à atomes froids (1990) L’horloge la plus précise au monde (SYRTE) 1 s tous les 20 millions d’années!! Limite : accélération de la pesanteur
Projet d’Horloge Atomique par refroidissement d’Atomes en Orbite + ACES Disséminer une échelle de temps ulta-stable avec une couverture mondiale Tests fondamentaux de la relativité générale: décalage des fréquences vers le rouge, anisotropie de c,.. Chronométrage des pulsars millisecondes: génération d’ondes gravitationnelles Dérive dans le temps de la constante de structure fine
G’ p,h-90 g – 2 of the electron (Harvard) h / m(Rb) CODATA 2002 P. Mohr and B. Taylor, RMP, 77 (2005) G. Gabrielse et al, PRL, 97, 030802, 2006 Déterminations de la constante de structure fine a Codata = Committee on DATA for science and technology RK=h/e2=m0c/2a quantum Hall effect Solid state physics hfs muonium QED g – 2 of the electron (UW) ae = f (a/p) mv=h/l h / m h / m(neutron) h / m(Cs) vr=ħk/m a-1 137.035 990 137.036 000 137.036 010
vr (Rb) ≈ 6 mm/S Difficultés Emission spontanée Mesure de la vitesse de recul : difficultés
k1 k2 Transition Raman séléctive en vitesse M e n2 n1 b a Absorption + émission stimulée L’atome gagne 2 fois la vitesse de recul Transition sélective en vitesse
N 2ħk Accélération cohérente sélection (Transition Raman) mesure (Transition Raman) 5P3/2 87Rb 5S1/2 F=2 F=2 F=1 F=1 F=1 Incertitude finale vr = v / (2N) Principe de l’expérience
k1 k2 Etot U0/2 p 2ħk Transfert de ~ 2000 x vr Determination de a à 6,7 x 10-9 Accélération cohérente dans un réseau optique M
M : la masse de la particule V : Vitesse de la particule h : constante de Planck Caractère ondulatoire de la matière Temp. Vitesse l de Broglie thermique (microns) 300 K 300 m/s 1 x 10-5 300 µK 30 m/s 0,01 300 nK 1 cm/s 1
Interférométrie atomique |b, v +2vr> |a, v > p/2 p/2 p/2 p/2 c M k1 k2 b a Mesure de h/MCs→ a [7 x 10-9] Mesure de g →[3 x 10-9]
Expérience de H. Cavendish 1798 (Balance de torsion)
Navigation inertielle d’engins civils • et militaires • Détection de bunker.. • Meilleurs connaissances des structures • géologiques (pétrole, diamants..) • Fluctuations des niveaux des océans, • climat, calotte glacière
Comment observer le condensat de Bose ? Imagerie d’absorption In-situ distribution spatiale dans le piège magnétique Par temps de vol distribution de vitesse
Vérification du principe d’équivalence Masse « Grave » ≈ Masse « Inerte » 10-12 Théorie des cordes ? Projet Hyper (Hyper-Precision Atom Interferometry In Space )
N/100 T/1000 N T F = 1 m = 1 h nRF F = 1 m = 0 F = 1 m = -1 Condensation de Bose-Einstein Prix Nobel 2001 n lDB3 est multiplié par 107
d d Condensation de Bose Einstein Longueur d’onde thermique de Broglie T = ambiante Particules quasi-ponctuelles d = f (n) T ~ 1 mK d ≈L Transition de phase à nL3 = 2.612 T < Tc Une fraction macroscopique des atomes passe dans le même état fondamental Condensation de Bose-Einstein Limite refroidissement dissipatif n lDB3= 10 -6
Statistique de Bose-Einstein Boson : particule de spin entier (photon, gluon…) Prix Nobel 2001
( m est le spin de l’atome) Collision élastique W x thermalisation gélas / ginelas> 150 Refroidissement évaporatif (pas de force de friction: non dissipatif)
Signature de la condensation de Bose-Einstein Quelques millions d’atomes dans un piège magnétique anisotrope 0.5 à 1 mK 100 mm * 5mm Temps de vol Gaz de Boltzmann Condensat Sans interaction 1000atomes de Rubidium dans l’état fondamental du Piège magnétique
Comment mesurer la température ? C.Salomon, J. Dalibard, W. Phillips, A. Clairon, S. Guellati, Europhys. Lett. 12, 683 (1990)
Source cohérente d’atomes interférométrie atomique
Projet d’Horloge Atomique par refroidissement d’Atomes en Orbite + ACES Tests fondamentaux de la relativité générale: décalage des fréquences vers le rouge, anisotropie de c,.. Dérive dans le temps de la constante de structure fine Chronométrage des pulsars millisecondes: génération d’ondes gravitationnelles Disséminer une échelle de temps ulta-stable avec une couverture mondiale
Etot U0/2 p 2ħk Accélération cohérente : approche des oscillations Blcoh M. Ben Dahan et al , Phys. Rev. Lett. 76 (1996) 4508. ~ 2000 x vr a à 6,7 x 10-9
Expérience de Stanford T /2 /2 |b > |b, v = 3 vr > |a > |a, v= 4 vr > p |a, v =0 > p T /2 /2 Mesure de h/MCs→ a [7 x 10-9] Mesure de g →[3 x 10-9]
72 valeurs 1 point = 4 spectres (20 mn) -1 10-7 Incertitude statistique sur a de 4.4£10-9 Nouvelle détermination de a ~ 450 oscillations de Bloch Efficacité de transfert >99.95% Cladé et al, PRL, 96 (2006) 033001
1 2 M k1 k2 F=1 2vr Energy h2 h1 Impulsion 0 Accélération cohérente des atomes : approche simple Succession de transitions Raman stimulées (même niveau hyperfin) 2 vrpar cycle Incertitude sur a = 6.7 10-9