520 likes | 769 Views
Cromatografia liquida ad alta prestazione (HPLC). La cromatografia liquida ad alta prestazione ( high performance liquid chromatography , HPLC) si sviluppò negli anni 60 al fine di analizzare molecole non idonee all’analisi GC
E N D
La cromatografia liquida ad alta prestazione (high performance liquid chromatography, HPLC) si sviluppò negli anni 60 al fine di analizzare molecole non idonee all’analisi GC • L’HPLC è l’evoluzione strumentale ad alta efficienza della cromatografia liquida su colonna ↓ diametro particelle impaccamento = efficienza = resistenza = ↓ flusso percolazione = necessità di aumentare pressione per forzare il solvente attraverso l’impaccamento costituito da particelle fini
Diametro 10 µm Diametro 5 µm
POMPA INIETTORE COLONNA SOLVENTE DETECTOR
Fase mobile iniezione detector pompe
Classificazione delle tecniche HPLC • I metodo • Cromatografia normale o fase diretta (fase stazionaria idrofila; fase mobile lipofila) • Cromatografia a fase inversa (fase stazionaria lipofila; fase mobile idrofila)
II metodo • Classificazione sul meccanismo di separazione: • cromatografia di adsorbimento liquido-solido • cromatografia di ripartizione liquido-liquido • Cromatografia di esclusione • Cromatografia di scambio ionico • cromatografia di affinità
La fase stazionaria Il supporto più comune è costituito da particelle microporose di silice, sferiche La silice non può essere usata per pH>12 in quanto si scioglie (per pH<> 8-12 si usano matrici polimeriche come il polistirene
Gruppi silanolici liberi: mediamente acidi: a pH 2-3 sono completamente protonati; a pH > 3 si dissociano a gruppi Si-O-. I gruppi Si-O- trattengono fortemente i composti basici possono (effetto di scodatura) • Silanoli geminiali: non acidi • Silanoli vicinali: non acidi Le particelle di gel di silice possono costituire la fase stazionaria per la cromatografia a fase normale di adsorbimento oppure la base per le fasi legate
I. La silice esterificata è suscettibile di idrolisi (non si può usare per fasi acquose o alcoli). Le fasi più stabili sono di formula Si-O-Si-R (legame silossanico)
La silice può essere funzionalizzata con diversi gruppi appropriati per cromatografia a scambio ionico, ripartizione, ecc
Fasi mobili acide (pH<2) tendono ad idrolizzare i legami silossanici: Si-O-Si-R Si-OH + HO-Si-R Il problema si risolve inserendo sostituenti ingombranti come l’isobutile
Fasi mobili La scelta della fase mobile dipende dalla fase stazionaria (fase mobile lipofila in cromatografia normale e polare-mediamente polare in fase inversa) • Requisiti generali: • bassa viscosità • Immiscibilità con la fase stazionaria • Capacità di solubilizzare il campione • Compatibilità con il rivelatore • Bassa corrosività • Bassa volatilità • Basso costo • Elevata purezza
La forza (°) è il parametro che definisce la forza di eluizione del solvente quando usato come fase mobile sul gel di silice. La viscosità deve essere inferiore a 1
La fase mobile può essere rappresentata da un unico solvente o da una miscela di solventi e la composizione può essere costante nel tempo (eluizione isocratica) o variabile (gradiente)
Fattori strumentali che controllano la velocità di eluizione Eluizione di composti neutri: il tempo di eluizione di un composto neutro è determinato dal bilancio tra la sua polarità e la sua lipofilia; il pH della fase mobile non esercita alcun effetto. Nel caso della cromatografia a fase inversa, quanto più il composto è lipofilo, tanto più è trattenuto. Situazione opposta nel caso della cromatografia a fase diretta.
Eluizione di composti ionizzabili: è necessaria una fase mobile tamponata per ottenere gli analiti in forma completamente indissociata (cromatografia di ripartizione) o dissociata (es. cromatografia scambio ionico). Nel caso di analiti acidi il pH deve essere almeno di due unità inferiori al pKa per avere l’analita in forma completamente indissociata. Nel caso di composti basici il pH deve essere maggiore di due unità rispetto al pKa.
Scegliere la modalità di separazione (diagramma di flusso per la scelta del punto di partenza)
Sistema di smorzamento • Sistema spirale: ad ogni colpo del pistone la spirale aumenta il diametro assorbendo l’energia della pulsazione • Smorzamento a membrana: una membrana separa la fase mobile da un liquido parzialmente comprimibile
Pompe alternative a doppia testata Ingresso solvente
Miscelazione solventi Miscelazione ad alta pressione Miscelazione a bassa pressione
Applicazioni dell’HPLC all’analisi quantitativa dei farmaci AMPICILLIN, ANHYDROUS , ANHYDROUS Ampicillinum anhydricum C16H19N3O4S Mr 349.4 DEFINITION Anhydrous ampicillin contains not less than 96.0 per cent and not more than the equivalent of 100.5 per cent of (2S,5R,6R)-6-[[(2R)-2-amino-2-phenylacetyl]amino]-3,3-dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylic acid, calculated with reference to the anhydrous substance.
ASSAY Examine by liquid chromatography (2.2.29). Test solution (a). Dissolve 27.0 mg of the substance to be examined in mobile phase A and dilute to 50.0 ml with the same solvent. Test solution (b). Dissolve 27.0 mg of the substance to be examined in mobile phase A and dilute to 10.0 ml with the same solvent. Reference solution (a). Dissolve 27.0 mg of anhydrous ampicillin CRS in mobile phase A and dilute to 50.0 ml with the same solvent. Reference solution (b). Dissolve 2.0 mg of cefradine CRS in mobile phase A and dilute to 50 ml with the same solvent. To 5.0 ml of this solution add 5.0 ml of reference solution (a). Reference solution (c). Dilute 1.0 ml of reference solution (a) to 20.0 ml with mobile phase A. Reference solution (d). Dilute 1.0 ml of reference solution (c) to 25.0 ml with mobile phase A.
The chromatographic procedure may be carried out using: — a column 0.25 m long and 4.6 mm in internal diameter packed with octadecylsilyl silica gel for chromatography R (5 µm), — as mobile phase at a flow rate of 1.0 ml/min: Mobile phase A. A mixture of 0.5 ml of dilute acetic acid R, 50 ml of 0.2 M potassium dihydrogen phosphate R and 50 ml of acetonitrile R, diluted to 1000 ml with water R, Mobile phase B. A mixture of 0.5 ml of dilute acetic acid R, 50 ml of 0.2 M potassium dihydrogen phosphate R and 400 ml of acetonitrile R, diluted to 1000 ml with water R, — as detector a spectrophotometer set at 254 nm, — a 50 µl loop injector.
Equilibrate the column with a mobile phase with ratio A:B of 85:15. Inject reference solution (b). The test is not valid unless the resolution between the two principal peaks is at least 3.0. If necessary, adjust the ratio A:B of the mobile phase. The mass distribution ratio for the first peak (ampicillin) is 2.0 to 2.5. Inject reference solution (d). Adjust the system to obtain a peak with a signal-to-noise ratio of at least 3. Inject reference solution (a) 6 times. The test is not valid unless the relative standard deviation for the area of the principal peak is at most 1.0 per cent. Inject alternately test solution (a) and reference solution (a). Calculate the percentage content of ampicillin.
Related substances. Examine by liquid chromatography (2.2.29) as described under Assay. Inject reference solution (c) and elute isocratically. Inject freshly prepared test solution (b) and start the elution isocratically. Immediately after elution of the ampicillin peak start the following linear gradient. If the mobile phase composition has been adjusted to achieve the required resolution, the adjusted composition will apply at time zero in the gradient. Equilibrate the column with the originally chosen mobile phase for 15 min. Inject mobile phase A and use the same elution gradient to obtain a blank. In the chromatogram obtained with test solution (b), the area of any peak, apart from the principal peak and any peak observed in the blank chromatogram, is not greater than the area of the principal peak in the chromatogram obtained with reference solution (c) (1.0 per cent).
LIQUORICE ROOT Liquiritiae radix DEFINITION Liquorice root consists of the dried unpeeled or peeled, whole or cut root and stolons of Glycyrrhiza glabra L. ►and/or of Glycyrrhiza inflata Bat. and/or Glycyrrhiza uralensis Fisch◄. It contains not less than 4.0 per cent of glycyrrhizic acid (C42H62O16; Mr 823), calculated with reference to the dried drug. ASSAY Examine by liquid chromatography (2.2.29). Test solution. Place 1.000 g of the powdered drug (180) in a 150 ml ground glass conical flask. Add 100.0 ml of an 8 g/l solution of ammonia R and treat in a ultrasonic bath for 30 min. Centrifuge a part of the supernatant layer and dilute 1.0 ml to 5.0 ml with an 8 g/l solution of ammonia R. Filter the solution through a filter (0.45 µm) and use the filtrate as the test solution. Solution A. Dissolve 0.130 g of monoammonium glycyrrhizate CRS in an 8 g/l solution of ammonia R and dilute to 100.0 ml with the same solvent. Reference solution (a). Dilute 5.0 ml of solution A to 100.0 ml with an 8 g/l solution of ammonia R. Reference solution (b). Dilute 10.0 ml of solution A to 100.0 ml with an 8 g/l solution of ammonia R. Reference solution (c). Dilute 15.0 ml of solution A to 100.0 ml with an 8 g/l solution of ammonia R.
The chromatographic procedure may be carried out using: — a stainless steel column 0.10 m long and 4 mm in internal diameter packed with octadecylsilyl silica gel for chromatography R (5 µm), — as mobile phase at a flow rate of 1.5 ml/min a mixture of 6 volumes of glacial acetic acid R, 30 volumes of acetonitrile R and 64 volumes of water R, — as detector a spectrophotometer set at 254 nm, — a 10 µl loop injector. Inject reference solution (c). Adjust the sensitivity of the system so that the height of the peaks are at least 50 per cent of the full scale of the recorder. Inject each reference solution and determine the peak areas. Establish a calibration curve with the concentration of the reference solutions (g/100 ml) as the abscissa and the corresponding areas as the ordinate. Inject the test solution. Using the retention time and the peak area determined from the chromatograms obtained with the reference solutions, locate and integrate the peak due to glycyrrhizic acid in the chromatogram obtained with the test solution.
Calculate the percentage content of glycyrrhizic acid from the following expression:
FLUOXETINE HYDROCHLORIDE Fluoxetini hydrochloridum C17H19CIF3NO Mr 345.8 DEFINITION Fluoxetine hydrochloride contains not less than 98.0 per cent and not more than the equivalent of 102.0 per cent of (3RS)-N-methyl-3-phenyl-3-[4-trifluoromethyl)phenoxy]propan-1-amine hydrochloride, calculated with reference to the anhydrous, acetonitrile-free substance.
ASSAY Examine by liquid chromatography (2.2.29). Test solution. Dissolve 55.0 mg of the substance to be examined in the mobile phase and dilute to 50.0 ml with the mobile phase. Dilute 10.0 ml of the solution to 100.0 ml with the mobile phase. Reference solution. Dissolve 55.0 mg of fluoxetine hydrochloride CRS in the mobile phase and dilute to 50.0 ml with the mobile phase. Dilute 10.0 ml of the solution to 100.0 ml with the mobile phase. The chromatographic procedure may be carried out using: — a stainless steel column 0.25 m long and 4.6 mm in internal diameter packed with octylsilyl silica gel for chromatography R (5 µm), — as mobile phase at a flow rate at 1 ml/min a mixture of 8 volumes of methanol R, 30 volumes of tetrahydrofuran R and 62 volumes of a solution of triethylamine R prepared as follows: to 10 ml of triethylamine R, add 980 ml of water R, mix and adjust to pH 6.0 with phosphoric acid R (about 4.5 ml) and dilute to 1000 ml with water R, — as detector a spectrophotometer set at 227 nm
When using a recorder, adjust the sensitivity of the system so that the height of the principal peak in the chromatogram obtained with reference solution is at least 50 per cent of the full scale of the recorder. Adjust the volumes of methanol and the solution of triethylamine in the mobile phase so that the retention time of fluoxetine is between 10 min and 18 min. The assay is not valid unless the symmetry factor calculated at 10 per cent of the height of the peak due to fluoxetine is at most 2.0. Inject 10 µl of the test solution and 10 µl of the reference solution. Calculate the content of fluoxetine hydrochloride (C17H19CIF3NO) from the area of the peaks in the chromatograms obtained with the test solution and the reference solution using the stated content of C17H19CIF3NO in fluoxetine hydrochloride CRS and correcting for the content of water and of acetonitrile in the substance to be examined.