1 / 44

Biossensores de DNA

“Aplicações Analíticas de Eletrodos de Pasta de Carbono Quimicamente Modificados em Soluções de Guanina” Robson Pinho da Silva Orientadora: Profª Drª Sílvia Helena Pires Serrano Laboratório de Bioeletroanalítica. Biossensores de DNA. Sensor de hibridização

Download Presentation

Biossensores de DNA

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. “Aplicações Analíticas de Eletrodos de Pasta de Carbono Quimicamente Modificados em Soluções de Guanina” Robson Pinho da Silva Orientadora: Profª Drª Sílvia Helena Pires Serrano Laboratório de Bioeletroanalítica

  2. Biossensores de DNA • Sensor de hibridização • Matriz para imobilização enzimática

  3. Podem ser utilizados para: Eletrodos Quimicamente Modificados com DNA • Caracterizar o comportamento redox e o desenvolvimento de metodologia analítica para quantificação de compostos de interesse biológico. • Caracterizar a interação entre Fármacos-DNA. Neste caso o fármaco tem o DNA como molécula alvo in vivo. Brett et al. Electroanal., 8 (11) 992 - 995 (1996).

  4. Sítios de oxidação da bases

  5. DNA degradado DNA Dupla Hélice Eletrodo Modificação dos Eletrodos com DNA V.P.D. registrados com EPC/DNA. Solução de DNA degradado 80 µg mL-1 em tampão acetato pH 4,5. Em vermelho branco apenas em tampão.  = 5 mV s-1, E = 50mV, larg. de pulso = 70 ms. Brett et al., In Comprrensive Chemical Kinetics;, Vol.37., Cap.3, pag.91 –119, R.G. Compton e G. Hancock (Editores), Oxford University Press, Oxford, 1999 Inglaterra

  6. Aplicações: • Identificação dos mecanismos de interação entre intermediários de redução dos nitrocompostos e o DNA . • Os sítios preferenciais de ataque dos intermediários de redução dos nitrocompostos são as bases purínicas (adenina e guanina)

  7. Objetivos Preparar Eletrodos Quimicamente Modificados a partir desta bases. Desenvolvimento de Metodologia Analítica No estudo do mecanismo de interação com Fármacos – Bases purínicas

  8. Primeira base utilizada foi a Guanina Eletrodos Quimicamente Modificados • Analitos de Interesse: NADH, NADPH, Ácido Úrico e 8-oxo-Guanina • Moléculas que via de regra, causam envenenamento superficial devido à adsorção dos produtos de oxidação.

  9. O- O- P P O- O- O- O- NADH e NADPH

  10. NADH e NADPH: São cofatores enzimáticos • Determinação de Atividade Enzimática. • Esclarecimento do mecanismo de Ação Enzimática • Desenvolvimento de Biossensores para substratos não eletroativos ou com eletroatividade em valores extremos de potencial

  11. Ácido Úrico • Um dos principais produtos finais do catabolismo de purinas (guanina e adenina) • Componente fisiológico associado aos sintomas de algumas doenças por exemplo a gota.

  12. 8-oxo-guanina: • O maior produto de degradação oxidativa do Dna. Usado como traçador biológico de estresse oxidativo. • Altos níveis dessa substâncias podem estar associados à incidência de câncer.

  13. Experimental Eletrodos de trabalho: • Pasta de carbono, (EPC) • Pasta de carbono modificado em solução de Guanina (EPC/G) • Pasta de carbono modificado em solução de 8-oxo-guanina (EPC/8-OXO).

  14. Eletrodo de referência: • Ag/AgCl (KCl sat.) • Eletrodo auxiliar: • Pt. • Equipamentos: • Potenciostato/ Galvanostato: Eco Chemie, Autolab, modelo PGSTAT 20 e aquisição de dados pelo software GPS 3.1. • pH-metro: modelo 654, Eletrodo de vidro combinado 6.0205.100 ( OE ), ambos da Metrohm.

  15. Modificação de eletrodos de trabalho: • Solução de Guanina 50 mM em tampão universal pH 8,0 • Solução de 8-oxo-guanina 50 mM em tampão universal pH 8,0 • 12 min. de condicionamento a 0,2 V; 0,4 V ou 1,1 V, sob agitação.

  16. Medidas voltamétricas dos analitos • Solução tampão PIPES pH 7,0 • Faixas de concentração: 15 a 824 M para 8-oxo-guanina e 7,5 a 841 M para os demais. • Voltamogramas de pulso diferencial (D.P. V.) • 0,0  Eapl 1,0 V •  = 5 mV s-1; • E = 50 mV • larg. de pulso = 70 ms.

  17. RESULTADOS EXPERIMENTAIS Para otimização das etapas de preparação dos Eletrodos modificados utilizou-se como analito apenas o NADH

  18. D.P.V. registrados em solução de 420 Mde NADH em PIPES pH 7,0 em EPC/G . (____) Modificado em solução de guanina a 0,42 V durante 12 min.; (____) Modificado em solução de guanina a 1,1 V durante 12 min. Silva R. P. e Serrano S. H. P., J. of Pharm. and Biom. Anal.33, 735 – 744 (2003).

  19. Qual a participação da 8-oxo-guanina na modificação do eletrodo?

  20. c a b m 3 A 0,2 0,4 0,6 0,8 0,2 0,4 0,6 0,8 0,2 0,4 0,6 0,8 E / V E / V E / V Figura 2:V.D.P. registrados em solução de 420 M NADH em tampão PIPES pH 7,0 com: (a) (EPC/8-oxo) modificado à 0,2 V (b) (EPC/8-oxo) modificado à 1,1 V . (c) (EPC/g ) modificado à 1,1 V.

  21. Como comprovar que a superfície do eletrodo foi totalmente modificada?

  22. D.P.V. registrados em solução tampão PIPES, pH 7,0 (brancos) com: (___ )(EPC)sem modificação; (___ )(EPC/G) a 1.1 V (___ )(EPC/8-oxo) modificado a 0,2 V.; (___ )(EPC/8-oxo) modificado a 1,1 V; (durante 12 min.)

  23. V.P.D. registrados com (EPC ) modificado em tampão HAc/NaAc, pH 4,5 branco a 1,1 V durante 12 min. em solução: (1)tampão HAc/NaAc, pH 4,5(2)50 M solução de guanina (5º volt.); (3) tampão HAc/NaAc, pH 4,5, após 2

  24. D.P.V. registrados em solução tampão HAc/NaAc, pH 4,5 branco a 1,1 V durante 12 min. com : (1) EPC modificado em Guanina 5 x 10-5 tampão HAc/NaAc, pH 4,5(2)EPC modificado em Guanina 5 x 10-4 tampão HAc/NaAc, pH 4,5

  25. O pH da solução de Guanina influencia o processo de modificação do eletrodo?

  26. O pH da solução de Guanina influencia o processo de modificação do eletrodo? Figura 4:V.P.D. registrados em solução 420 M deNADH (PIPES pH 7,0)(___)(EPC/G pH 4,5),(___)(EPC/g pH 7,0) e (___) (EPC/G pH 8,0)

  27. 14 adições no intervalo de concentração : 7,5 x 10-6 M  NADH  8,1 x 10-4 M Em cada adição foram realizados 3 voltamogramas Comparações entre os D.P.V. registrados em concentrações crescentes de NADH em tampão PIPES pH 7,0 : EPC e EPC/G .

  28. Curvas Analíticas para NADH

  29. Comparações entre as curvas de adição de padrão de NADH, Ip vs. [NADH] : 1a série, 2a série, 3a série e 4a série (A) (EPC); B) (EPC/G);

  30. Faixa de concentração : 7,5 M  NADPH  810 M Comparações dos V.P.D. em concentrações crescentes de NADPH em tampão PIPES pH 7,0 : EPC e EPC/G .

  31. Comparações entre as curvas de adição de padrão de NADPH, Ip vs. [NADPH] : 1a série, 2a série, 3a série e 4a série(A) (EPC); (B) (EPC/G);

  32. Faixa de concentração : 7,5 M  Ác. Úrico  810 M Comparações dos D.P.V. em concentrações crescentes de Ácido Úrico em tampão PIPES pH 7,0 : (A) (EPC/G pH 8,0); (B) (EPC) .

  33. Faixa de concentração : 15 M  8-oxo-guanina  840 M Comparações dos D.P.V. em concentrações crescentes de 8-oxo-guanina em tampão PIPES pH 7,0 : (EPC/G) e (EPC) .

  34. CONSIDERAÇÕES FINAIS

  35. EPC/G podem ser utilizados para determinação de NADH, NADPH, Ác. Úrico ou 8-oxo-guanina

  36. Comparação entre EPC/G e EPC

  37. Apresenta resultados mais reprodutíveis A superfície modificada: • Evita adsorção dos produtos de oxidação de NADH e NADPH, Ácido Úrico e 8-oxo-guanina • Favorece o processo de transferência de elétrons

  38. No eletrodo modificado em guanina o processo é controlado por difusão

  39. Gráfico de I vs. 1/2 obtido pela corrente limite dos voltamogramas cíclicos na diversas velocidade de rotação com: (A) EPC/G (B)EPC; concentrações de NADH: (a) 0,29 mM; (b) 0,55 mM; (c) 0,78 mM,(d) 1,00 mM; (e) 1,20 mM.

  40. A provável composição para superfície modificadora é uma estrutura formada por dímeros ou trímeros formado por guanina e 8-oxo-guanina;

  41. (1) A. M. O. Brett, S. H. P. Serrano e J. A. P. Piedade, “Electrochemistry of DNA”. In:Comprehensive Chemical Kinetics - Book Series, Vol.37., Cap.3, pag.91 –119, R.G. Compton e G. Hancock (Editores), Oxford University Press, Oxford, 1999 Inglaterra • (2) R. Srinivasan, J. C. Murphy e R. Faichtein, J. Electroanal. Chem, 312, 293-300 (1991). • (3) N. J. Tao e Z. Shi, J. Phys. Chem, 98, 1464-1471 (1994). • (4) N. J. Tao e Z. Shi, J. Phys. Chem, 98, 7422-7426 (1994)

  42. Mecanismo de oxidação

  43. Mecanismo de oxidação

  44. Modificação do Eletrodo • Em potencias positivos (+1,4V ) as bases purínicas (guanina e adenina) do DNA degradado em solução são oxidadas na superfície do eletrodo recoberto com filme de DNA modificando-o de forma permanente e dando origem a uma fase condutora. V.P.D. registrados com EPC/DNA. Solução de DNA degradado 80 µg mL-1 em tampão acetato pH 4,5. Em vermelho branco apenas em tampão.  = 5 mV s-1, E = 50mV, larg. de pulso = 70 ms.

More Related