430 likes | 824 Views
ULAŞTIRMA MODELLERİ. Ulaştırma Modelleri, doğrusal programlama problemlerinin özel bir hali olup, belirli merkezlerde üretilen ürünlerin,belirli hedeflere minumum maliyetlerle taşınması algoritmasıdır ve ilk defa 1947 yılında Hitchock Petrol Endüstrisinde uygulanmıştır.
E N D
ULAŞTIRMA MODELLERİ Ulaştırma Modelleri, doğrusal programlama problemlerinin özel bir hali olup, belirli merkezlerde üretilen ürünlerin,belirli hedeflere minumum maliyetlerle taşınması algoritmasıdır ve ilk defa 1947 yılında Hitchock Petrol Endüstrisinde uygulanmıştır. Ulaştırma modellerinde kısıtlayıcılar, arz merkezlerinin kapasitesi ve talep merkezlerinin isteklerine bağlı olarak formüle edilmektedir. Ayrıca, taşıma maliyetinin, taşınacak ürünlerin miktarına göre değiştiği varsayılmaktadır.
MODELİN GELİŞTİRİLMESİ • Ulaştırma modeli şeklinde formüle edilen bir problem, simplex yöntemi ile çözülebildiği gibi kendine has ulaştırma algoritması, atama ve aktarma modelleri gibi tekniklerle, daha az zamanda ve daha az hesaplamalarla çözme alternatifleri vardır. • Hitchock tan sonra, Koopmans, Dantzig, Copper ve Charnes’in geliştirdikleri teknik 1960 yıllardan itibaren aşağıdaki alanlarda yaygınca kullanılmıştır. a)Üretim ve tüketim merkezleri arasında optimal mal dağıtım programlarının belirlenmesi,
b)Yapılacak işlerin makinalara dağıtımı, c)Üretim planlaması d)Çeşitli şebeke ağ problemleri, e)İşletmelerin kuruluş yeri seçimi problemleri..
ULAŞTIRMA MODELİNİN TANIMI • Bir ulaştırma modelinin şematik yapısı üretim merkezleri ile tüketim merkezleri arasındaki ilişkilere bağlıdır. • (m) kadar üretim merkezi ve (n) kadar tüketim merkezi olan bir ulaştırma modelinde; (i) İnci üretim merkezi ancak (ai) miktarda mal arz ederken, (j) İnci tüketim merkezi de ancak (bj) miktarda mal talep edebilmektedir. Cij ise , 1 birim malın(kg, ton, vs) i. inci üretim merkezinden j. inci tüketim merkezine taşıma maliyetidir.
MODELİN ŞEMATİK YAPISI(4 üretim,5 tüketim merkezi) Arz M. Üretim Merkezi Tüketim Merkezi Talep --------- ----------------------- ------------------------ ------------ a1 b1 a2 b2 a3 b3 a4 b4 b5 F1 D1 D2 F2 D3 F3 F4 D4 Σai = Σbi olmalıdır D5
VARSAYIMLAR • Modelde kullanılan tüm bilgiler ve probleme konu olan mal ve hizmetler, bütün üretim ve tüketim merkezleri için aynı birim ve türden olmalıdır. • Her bir üretim merkezi ile her bir tüketim merkezi arasında bir birim malın taşınma ücreti belirli olmalıdır. • Her bir arz ve tüketim merkezlerindeki toplam arz ve toplam talep tam olarak bilinmelidir. • Üretim yada arz merkezlerinden dağıtılacak toplam miktar, tüketim merkezlerinde oluşan toplam talebe eşit olmalıdır.Bu eşitlik yok ise, problem dengesiz olup, KUKLA ARZ yada KUKLA TÜKETİM merkezleri eklenerek denge sağlanır.
ULAŞTIRMA PROBLEMİNİN STANDART GÖSTERİMİ Ulaştırma problemlerinin standart gösterimleri ulaştırma tabloları ile gösterilebilir. Yukarıda verilen 4 üretim merkezli ve 5 tüketim merkezli problemin tablo halinde gösterimi aşağıdaki gibidir.
Bu grafik yazımın tablo halindeki ifadesi aşağıdaki gibidir. Tüketim merkezi Üretim merkezi
Xij=i üretim merkezinden j tüketim merkezine gönderilecek ürün miktarı • Cij=i. merkezden j. merkeze taşıma maliyeti • Bu tip problemleri Doğrusal Programlama olarak organize edebiliriz, fakat Ulaştırma Problemlerine has teknikler de geliştirilmiştir.
Amaç maliyet minimizasyonu olduğuna göre Min Z=c11x11+c12x12+...+c45x45 Kısıtlar x11+x12+x13+x14+x15≤a1 x21+x22+x23+x24+x25≤a2 Arz kısıtları x31+x32+x33+x34+x35≤a3 x41+x42+x43+x44+x45≤a4 x11+x21+x31+x41≥b1 x12+x22+x32+x42≥b2 x13+x23+x33+x43≥b3 Talep kısıtları x14+x24+x34+x44≥b4 x15+x25+x35+x45≥b5 xij≥0
Problemin uygun çözümü varsa Toplam Talep Toplam Arzdan daha çok olamaz.
Dengeli ve Dengesiz Ulaştırma Problemleri • Ulaştırma problemlerinde Denge Durumu aşağıdaki gibi ifade edilir. • Gerçek uygulamalı problemlerde bu dengelenmiş durum olmayabilir. Yani sağlanan arz talepten çok olabilir veya talep arzdan fazla olabilir. Bu gibi durumlarda;
a)Arz Talepten Çok İse • Problemi dengelemek için farkını tüketmek için modele KUKLA (DUMMY) tüketim merkezi eklenir. bu kukla merkeze taşıma maliyeti “0” olur.
b)Arz Talepten Az İse farkını kapatmak için modele “Kukla Üretim Merkezi” eklenir. Ancak hiçbir Tüketim Merkezi kukla üretim merkezinden mal almaz.
Ulaştırma Problemlerinin Çözüm Algoritması • Kuzey-Batı Köşe Yöntemi • En Az Maliyetli Gözeler Yöntemi • Sıra ve Sütun En Küçüğü Yöntemi • Vogel (VAM) Yaklaşımı
Çözüm Algoritmalarındaki adımlar aşağıdaki gibidir. • Başlangıç temel uygun çözümün bulunması • Bulunan çözümün optimal olup olmadığına bakılır. Bu adım aynı zamanda temel olmayan değişkenler arasında temel değişken olarak girecek değişkenler belirler.
Çözüm optimal değilse geliştirilir, yani halihazır temel değişkenler arasında çözümü bırakacak değişkenler belirlenerek yeni temel çözüm bulunur. • 2. ve 3. adımlar optimal çözüm elde edilinceye kadar tekrarlanır.
Ulaştırma probleminde m…satır sayısında, n…sütun sayısını gösterir. (m+n) sayıdaki kısıtlardan biri keyfidir. Problem (m+n) sayıda değişkene sahip ve çözümdeki dağıtım işlemi (m+n-1) sayıdaki hücreye yapıldı ise çözüm TEMEL olduğu gibi (m+n-1) sayıda değişkeni de vardır.
Çözüm • Kuzeybatı Köşe Yöntemi
Maliyet: 200(10)+50(7)+200(8)+150(8)+200(12)+50(0) =7550 br.TL.
2.yol: • En-az Maliyetli Gözeler Yöntemi TCmin=50(7)+200(6)+200(8)+200(5)+150(8)+50(0) =5350 br.TL.
3.yol: • Sıra ve Sütun En Küçüğü Yöntemi • Bu metoda göre önce 1. sıradaki en küçük maliyetli gözeye sıra ve sütun şartlarına bağlı kalarak “En Büyük” ayırım yapılır. • 1. sıra şartı doyurulmamış ise, sırada bir sonraki EN KÜÇÜK MALİYETLİ gözeye kalan miktar dağıtılır. • Böylece her defasında bir alt sıraya geçilerek aynı işlem yapılır ve her sıra ve sütun miktarı doyurularak tüm ayırımlar yapılır.
Önceki Örnek TCmin=5(150)+0(50)+7(250)+8(150)+9(200)+12(50) =6100 TL.
4.yol: • VOGEL Yaklaşımı • VAM Yöntemi (NW) gibi çabuk başlangıç çözümü vermez, fakat bu yaklaşımın başlangıç dağıtımları optimal çözüme oldukça yakındır. • Bu yaklaşımda EN KÜÇÜK MALİYETLİ GÖZELER yöntemi gibi VAM ile başlangıç çözüm elde edilirken herbir hücredeki maliyetler hesaba katılır ve EN AZ DÜŞÜK maliyetli hedefleri seçmemekten doğan EK GİDERLER hesaplanır.
Bu giderlere pişmanlık veya cezalar adı verilir. Söz konusu yöntem için aşağıdaki adımlar izlenir: • Ulaştırma tablosundaki hücre maliyetlerinden herbir satır ve sütun için cezalar belirlenir. Bu cezaların belirlenmesinde herbir satır (sütun)da yer alan EN KÜÇÜK maliyetli eleman aynı satırda (sütunda)ki en küçük maliyete en yakın maliyetten çıkarılır.
Belirlenen bu cezalar, satır ve sütun halinde ulaştırma tablosunun altında ve yanında yer alır. Sonra tüm satır ve sütun cezalar arasında en büyüğü seçilir ve bu seçilen cezanın karşılığı satır veya sütundaki EN KÜÇÜK MALİYETLİ hücreye mümkün en fazla dağıtım yapılır. Talep ve Arz uygunluğuna göre yapılan dağıtımdan sonra doyurulan satır ve sütun bırakılarak 3. işleme geçilir. • Geriye kalan hücrelerdeki maliyetler için sütun ve satır cezaları tekrar hesaplanır ve 2. adımdaki hesaplamalar yapılır.
Örnek: Bir şirket arabalarını 2 merkezden kiraya vermektedir. Kiralama talebi gelen 4 merkezin talep miktarları sırasıyla D1=9, D2=6, D3=7, D4=9 arabadır. Şirketin elinde fazladan • merkezde 15 • merkezde 13 araba vardır. Kira sözleşmesine göre arabalar kiralandıktan Sonra tekrar aynı merkeze iade edilirler.
Arabaların kiracılara ulaştırılma maliyetleri aşağıdaki gibidir: Bu bilgiler ışığı altında optimal taşıma şartlarını VOGEL’e göre belirleyiniz.
Çözüm: • Önce Arz ve Talep Dengesini değerlendirmek gerekir. fark var. O halde modele sanal bir arz (sunum) merkezi eklemek gerekir. Bu sanal merkezin arzı 3 birim olmalıdır. Buna göre
Ceza maliyetlerinin hesabı: en küçük iki maliyet arasındaki fark. • Burada sütun 4’ün cezası en yüksek olduğundan ilk dağıtım, sütun 4’ün en küçük maliyetli hücresine olabildiği kadar yapılır. • Burada EN KÜÇÜK MALİYET “0”dır. • Bu hücreye M3’ün toplam arzı olan 3 birim taksi verilir. Burada 3. kukla ARZ merkezi devreden çıkar.
Bu adımda D1’in ihtiyacı karşılandı ve tablodan çıkarıyoruz.
Bütün bu dağıtımlar bir tabloda toplanırsa aşağıdaki başlangıç çözümü bulunur. TCmin=6(17)+3(21)+6(30)+9(14)+4(19)+3(0) =547 br. TL.
Çok Fabrikalı Sisteme Yeni Bir Fabrika Katılması (Atlama Taşı Yöntemi) M Q A B C N P D E R Mevcut fabrikalar A Fabrika kurulması planlanan yerler C Tüketim merkezleri M
Çok Fabrikalı Sisteme Yeni Bir Fabrika Katılması (Atlama Taşı Yöntemi) 3,12 3,00 3,10 10 3,06 3,12 3,01 8 7 3,11 3,10 2,94 16 3,08 3,16 3,06 19 3,20 3,07 3,17 10 2 Toplam Maliyet = (10*3,00) + (8*3,06) + (7*3,01) + (16*2,94) + (19*3,08) + 10*3,17) + (2*3,07) = 218,950 TL