1 / 39

Successes and problems of chiral soliton approach to exotic baryons

Micha ł Praszałowicz - Jagellonian University Kraków , Poland. Successes and problems of chiral soliton approach to exotic baryons. Cracow Epiphany Conference on Hadron Spectroscopy January 6-8, 2005. Early predictions: quark models: Gell-Mann mentioned 10 *

thai
Download Presentation

Successes and problems of chiral soliton approach to exotic baryons

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Michał Praszałowicz - Jagellonian University Kraków, Poland Successes and problems of chiral soliton approach to exotic baryons Cracow Epiphany Conference on Hadron Spectroscopy January 6-8, 2005

  2. M. Praszałowicz (Kraków)

  3. Early predictions: quark models: Gell-Mann mentioned 10* but Z+ was expected to be negative parity heavy (> 1700 MeV) and wide soliton models: positive parity Biedenharn, Dothan (1984): 10-8 ~ 600 MeV from Skyrme model MP (1987): M= 1535 MeV from Skyrme model in model independent approach, second order Diakonov, Petrov, Polyakov (1997): QM- model independent approach, 1/Nc corrections M= 1530 MeV, < 15 MeV

  4. Spectrum of the Dirac operator M. Praszałowicz (Kraków)

  5. Spectrum of the Dirac operator M. Praszałowicz (Kraków)

  6. Spontaneously broken chiral symmetry constituent quark mass: How does a low-momentum chirally invariant Lagrangian with massive quarks look like?

  7. Spontaneously broken chiral symmetry constituent quark mass: How does a low-momentum chirally invariant Lagrangian with massive quarks look like? is invariant, because one can absorb chiral rotation into the redefined pseudoscalar meson fieldsA Note that = f (q, q)  quarks do interact Chiral symmetry is spontaneously broken: < A > = 0 Goldstone bosons are massless

  8. Baryons M. Praszałowicz (Kraków)

  9. Baryons M. Praszałowicz (Kraków)

  10. Baryons valence level: energy decreases sea levels: energy increases This is Soliton system stabilzes M. Praszałowicz (Kraków)

  11. Chiral Quark Model constituent quark mass ~ 350 MeV pions fermions integrate out quarks "Skyrme" Model only massless pion fields, kinetic term + interaction terms M. Praszałowicz (Kraków)

  12. Chiral Quark Model constituent quark mass ~ 350 MeV pions fermions integrate out quarks Skyrme Model only massless pion fields, kinetic term + interaction terms Soliton in the Skyrme model is stabilizes by the Sk. term M. Praszałowicz (Kraków)

  13. Quantizing SU(3) Skyrmion and QM time-dependent rotation angular velocities: analogy with symmetric top M. Praszałowicz (Kraków)

  14. Wave functions and allowed states B S I3 Y M. Praszałowicz (Kraków)

  15. Mass formula O(1) corrections to Mcl do not allow for absolute mass predictions octet-decuplet splitting exotic-nonexotic splittings known ? first order perturbation in the strange quark mass and in Nc: x M. Praszałowicz (Kraków)

  16. Mass formula octet-decuplet splitting exotic-nonexotic splittings known ? first order perturbation in the strange quark mass and in Nc: x E. Guadagnini Nucl.Phys.B236 (1984) 35 M. Praszałowicz (Kraków)

  17. Skyrme model spectrum symmetry breaking Hamiltonian is too primitive: richer structure is needed M. Praszałowicz (Kraków)

  18. go to higher orders in ms go to higher orders in Nc M. Praszałowicz (Kraków)

  19. Yabu-Ando: higher orders in ms H. Yabu, K. Ando, Nucl.Phys.B301 (1988) 601 second order: M.P., Phys. Lett. B575 (2003) 234 talk at the Cracow Workshop on Skyrmions and Anomalies, Mogilany, Poland, 1987, World Scientific 1987, p.112. first order in  Constraints: M. Praszałowicz (Kraków)

  20. Numerical values for all masses Talk at the Cracow Workshop on Skyrmions and Anomalies, Mogilany, Poland, Feb 20-24, 1987, World Scientific 1987, p.112. M. Praszałowicz (Kraków)

  21. go to higher orders in ms go to higher orders in Nc M. Praszałowicz (Kraków)

  22. QM breaking hamiltonian E. Guadagnini Nucl.Phys.B236 (1984) 35 calculate next-to-leading contributions to H' equivalent to Guadagnini mass formula: O(Nc)+O(1) O(1) O(1) all O(ms) M. Praszałowicz (Kraków)

  23. QM breaking hamiltonian calculate next-to-leading contributions to H' O(Nc)+O(1) O(1) O(1) all O(ms) Diakonov, Petrov, Polyakov, Z.Phys A359 (97) 305 richer H': * no handle on I2 * only 2 linear combinations of parameters ',  and  enter nonexotic splittings splittings in 10  10 M. Praszałowicz (Kraków)

  24. QM breaking hamiltonian calculate next-to-leading contributions to H' O(Nc)+O(1) O(1) O(1) all O(ms) Diakonov, Petrov, Polyakov, Z.Phys A359 (97) 305 richer H': * no handle on I2 * only 2 linear combinations of parameters ',  and  enter nonexotic splittings splittings in 10  10 models give I2 ~ 0.5 fm ~ 400 MeV -1 M10 ~ 1750 MeV M ~ 1450 MeV M. Praszałowicz (Kraków)

  25. Antidecuplet in QM richer H': splittings in 10  10 , still no handle on I2 fixes I2 Diakonov, Petrov Polyakov Z.Phys A359 (97) fixed by N  M10

  26. Freedom in QM M.Diakonov, V.Petrov, M.Polyakov, Z.Phys. A359 (1997) 305 NA49 27 -plet M.M.Pavan, I.I.Strakovsky, R.L.Workman, R.A.Arndt,PiN Newslett.16 (2002) 110 T.Inoue, V.E.Lyubovitskij, T.Gutsche, A.Faessler,arXiv:hep-ph/0311275 M. Praszałowicz (Kraków)

  27. Width G.S. Adkins, C.R. Nappi, E. Witten, Nucl. Phys. B228 (1983) 552 operator V has the same structure as axial current Diakonov, Petrov, Polyakov, Z.Phys A359 (97) 305 Weigel, Eur.Phys.J.A2 (98) 391, hep-ph/0006619 M. Praszałowicz (Kraków)

  28. Width in the soliton model SU(3) relations   Decuplet decay: Antidecuplet decay: In NRQM limit: M. Praszałowicz (Kraków)

  29. Small Soliton Limit Diakonov, Petrov, Polyakov, Z.Phys A359 (97) 305 MP, A.Blotz K.Goeke, Phys.Lett.B354:415-422,1995 energy is calculated with respect to the vacuum: in the small soliton limit only valence level contributes M. Praszałowicz (Kraków)

  30. Width Diakonov, Petrov, Polyakov, Z.Phys A359 (97) 305 Decuplet decay: Antidecuplet decay: In small soliton limit: In reality: < 15 MeV M. Praszałowicz (Kraków)

  31. Mass formula O(Nc) O(Nc,ms) unknown corrections O(1) O(1) O(Nc) O(1/Nc) O(Nc,ms) + O(1,ms) M. Praszałowicz (Kraków)

  32. Width chiral limit: nonzero meson masses: M. Praszałowicz (Kraków)

  33. Matching with the bound state approach Callan, Klebanov Nucl.Phys.B262:365,1985 Nadeau, Nowak, Rho, VentoPhys.Rev.Lett.57:2127-2130,1986 Callan, Klebanov , Hornbostel, Phys.Lett.B202:269,1988 Itzhaki, Klebanov, Quyang, Rastelli, Nucl.Phys.B684:264-280,2004 K- is bound K+ is not bound and has no smooth limit to rigid rotator K WZ M. Praszałowicz (Kraków)

  34. Applications of Chiral Quark Models • Spectra: Diakonov, Petrov, Polyakov , Z.Phys A359 (97) • M.P., Phys. Lett. B575 (2003) 234 • 2. Nucleon quark distribution functions: • D.Diakonov, V.Petrov, P.Pobylitsa, • M.V.Polyakov C.Weiss, • Nucl. Phys.B480, 341 (1996) M. Praszałowicz (Kraków)

  35. Applications of Chiral Quark Models • Spectra: Diakonov, Petrov, Polyakov , Z.Phys A359 (97) • M.P., Phys. Lett. B575 (2003) 234 • 2. Nucleon distribution functions: • D.Diakonov, V.Petrov, P.Pobylitsa, • M.V.Polyakov C.Weiss, • Nucl. Phys.B480, 341 (1996) • 3. Skewed parton distributions: • V.Y.Petrov, P.V.Pobylitsa, M.V.Polyakov, • I.Bornig, K.Goeke and C.Weiss,Phys. • Rev. D574325 (1998) M. Praszałowicz (Kraków)

  36. Applications of Chiral Quark Models • Spectra: Diakonov, Petrov, Polyakov , Z.Phys A359 (97) • M.P., Phys. Lett. B575 (2003) 234 • 2. Nucleon distribution functions: • D.Diakonov, V.Petrov, P.Pobylitsa, • M.V.Polyakov C.Weiss, • Nucl. Phys.B480, 341 (1996) • 3. Skewed parton distributions: • V.Y.Petrov, P.V.Pobylitsa, M.V.Polyakov, • I.Bornig, K.Goeke and C.Weiss,Phys. • Rev. D574325 (1998) • 4.Nucleon light-cone d.a. • V.Y.Petrov, M.V.Polyakov, arXiv:hep-ph/0307077 M. Praszałowicz (Kraków)

  37. Applications of Chiral Quark Models • Spectra: Diakonov, Petrov, Polyakov , Z.Phys A359 (97) • M.P., Phys. Lett. B575 (2003) 234 • 2. Nucleon distribution functions: • D.Diakonov, V.Petrov, P.Pobylitsa, • M.V.Polyakov C.Weiss, • Nucl. Phys.B480, 341 (1996) • 3. Skewed parton distributions: • V.Y.Petrov, P.V.Pobylitsa, M.V.Polyakov, • I.Bornig, K.Goeke and C.Weiss,Phys. • Rev. D574325 (1998) • 4.Nucleon light-cone d.a. • V.Y.Petrov, M.V.Polyakov, arXiv:hep-ph/0307077 • 5. Pion light-cone d.a. • M.P., A.Rostworowski: Phys. Rev. D64 (2001) 074003 Phys.Rev.D66 (2002) 054002, M.P., A. Bzdak Acta. Phys. • Pol. B34 (2003) 3401, V.Yu. Petrov and P.V. Pobylitsa, • hep-ph/9712203, V.Yu. Petrov, M.V. Polyakov, R. Ruskov, • C. Weiss and K. Goeke, Phys. Rev. D59 (1999)114018 M. Praszałowicz (Kraków)

  38. Applications of Chiral Quark Models • Spectra: Diakonov, Petrov, Polyakov , Z.Phys A359 (97) • M.P., Phys. Lett. B575 (2003) 234 • 2. Nucleon distribution functions: • D.Diakonov, V.Petrov, P.Pobylitsa, • M.V.Polyakov C.Weiss, • Nucl. Phys.B480, 341 (1996) • 3. Skewed parton distributions: • V.Y.Petrov, P.V.Pobylitsa, M.V.Polyakov, • I.Bornig, K.Goeke and C.Weiss,Phys. • Rev. D574325 (1998) • 4.Nucleon light-cone w.f. • V.Y.Petrov, M.V.Polyakov, arXiv:hep-ph/0307077 • 5. Pion light-cone w.f. • M.P., A.Rostworowski: Phys. Rev. D64 (2001) 074003 Phys.Rev.D66 (2002) 054002, M.P., A. Bzdak Acta. Phys. • Pol. B34 (2003) 3401, V.Yu. Petrov and P.V. Pobylitsa, • hep-ph/9712203, V.Yu. Petrov, M.V. Polyakov, R. Ruskov, • C. Weiss and K. Goeke, Phys. Rev. D59 (1999)114018 • 6. Two pion DA, pion skewed and off-forward distributions and structure functions: M.P., A.Rostworowski, Acta Phys.Polon.B34, 2699 (2003) M. Praszałowicz (Kraków)

  39. Summary Soliton models are effective chiral descendants of QCD Collective quantization reproduces known multiplets Exotics appears in a natural way Skyrme model indicates that exotics are light QM has some freedom concerning spectrum, states are narrow, cancellation consistent with Nc QM is able to describe various properties of baryons Nc counting is wrong for the widths reason: phase space splittings are O(1) Is rigid rotator valid in this case? No exotics in bound state approach M. Praszałowicz (Kraków)

More Related