430 likes | 853 Views
BIOKIMIA. Osfar sjofjan Email : osofjan@yahoo.com Or osfarsjofjan@yahoo.co.id. Buku Acuan. Trudy McKee and James McKee. 2003. Biochemistry: The Molecular Basis of Life. Third edition. McGraw-Hill, Boston.
E N D
BIOKIMIA Osfar sjofjan Email : osofjan@yahoo.com Or osfarsjofjan@yahoo.co.id
Buku Acuan • Trudy McKee and James McKee. 2003. Biochemistry: The Molecular Basis of Life. Third edition. McGraw-Hill, Boston. • Lehninger, Nelson, & Cox. 1997. Principles of Biochemistry.2nd edition. Worth Publishers. • Albert L. Lehninger. 1995. Dasar-dasar Biokimia. (Alih bahasa: Maggy Thenawidjaja). Penerbit Erlangga, Jakarta. • David S. Page. 1995. Prinsip-prinsip Biokimia. Penerbit Unair, Surabaya. • Soeharsono. 1982. Biokimia I dan II. Gadjah Mada University Press, Yogyakarta.
Tata Tertib Kuliah • Tepatwaktu, toleransimaks. 15 menit • TidakBerisik • HP tidakdiaktifkan • Hadir minimal 80% • Pahambahasa Indonesia & Inggris • Baca salahsatu / duabukuacuan • KerjakanTugas, Mid, & Ujian
RPKPS MTK BIOKIMIA Mtkiniakanmembahastentangselsebagai unit dasarkehidupan (hewandantanaman), pengertianmetabolisme, strukturdanfungsi protein danenim, bioenergetikadanmetabolismekarbohidratdanlemak, biosintesis protein danasam amino, strukturdanfungsidanreplikasimakromoolekulinformasigenetik, biokimiakomunikasiintraselulairdanekstraselulair, biosintesis mineral danvitain. AplikasiIlmubiokimiaternakmenyiasaiperubaannutrisidanlingkungansertastrategiproduksisusu, telurdandaingsertaolahannya.
Tujuan Perkuliahan • Mengenalkan dan memahamkan bahasa biokimia : Kosakata (istilah dan struktur kimia), tatabahasa (reaksi-reaksi kimia), struktur kalimat (Jalur metabolisme) dan arti (keterkaitan metabolik)
FilosofiPembelajaran • Menjelaskan, bukan mengindoktrinasi • Menunjukkan hal yang perlu diketahui dan yang tidak perlu diketahui • Menghargai pertanyaan tentang hal yang belum diketahui • Mempelajari semua hal adalah tidak mungkin, tetapi yang lebih penting adalah mengorganisir hal yang kita ketahui agar dapat digunakan
STRATEGI PERKULIAHAN / PRAKTIKUM • Metode perkuliahan akan banyak menggunakan ceramah dikombinasikan dengan metode diskusi dan tugas membuat makalah serta pengembangan softskill mahasiswa (komunikasi lisan, etika dan berpikir analitis)
STRATEGI PERKULIAHAN / PRAKTIKUM • Berbagai instruksi instruksional akan digunakan dalam perkuliahan tersebut yaitu membuat tugas terstruktur / makalah topik perkuliahan, mahasiswa mencari bahan dengan referensi terbaru yang dilampirkan bersamaan tugas terstruktur / makalah yang dikumpulkan pada tengah dan akhir semester sebagai salah satu komponen bobot penilaian
TUGAS • Mahasiswa ditugaskan untuk membaca setiap bacaan perkuliahan sebelum perkuliahan dilaksanakan • Tugas materi perkuliahan berikutnya diberikan tiap akhir pertemuan kuliah sebelumnya • Tugas terstruktur berupa makalah dan dipresentasikan pada perkuliahan sesuai jadwal yang disepakati • Tugas praktikum terdiri laporan sementara dan laporan akhir praktikum. Laporan sementara dikumpulkan tiap akhir praktikum, sedangkan laporan akhir dikumpulkan setelah semua materi praktikum selesai dilaksanakan
KRITERIA PENILAIAN • Nilai diberikan terhadap mahasiswa apabila telah memenuhi ketentuan kehadiran kuliah yaitu 80% bagi mahasiswa baru dan 80% bagi mahasiswa mengulang • KehadiranPraktikum 100 % • PembobotanPenilaian (A,B+ … E) dilakukan menggunakan acuan SesuaiBukuPedomanPendidikanFpt UB
MONEV MTK Biokimia • Kuiz / TugasTerstruktur : 10 % • UTS : 30 % • Praktikum : 30 % • UAS : 30 %
Staf Pengajar • Prof. Dr. IrKusmartono • Prof. Dr. Ir. Suyadi, M.Agr.DSc. MS • Dr. Ir. OsfarSjofjan, M.Sc • Dr. Ir. GatotCiptadi, DESS • Dr. Ir. EkoWidodo, M.Agr.Sc. M.Sc • Dr. Ir. Marjuki, M.Sc • DedesArmeningtiyas, S.Pt. MP • ArthariniIrsyammawati, S.Pt. MP • AchadiahS.Pt. MP • RiniDwiWahyuni, S.Pt. MP • FirmanDjaya, S.Pt. MP
What is biochemistry? • Definition: • Webster’s dictionary: Bios = Greek, meaning “life” “The chemistry of living organisms; the chemistry of the processes incidental to, and characteristic of, life.” • WebNet dictionary: “Biochemistry is the organic chemistry of compounds and processes occuring in organisms; the effort to understand biology within the context of chemistry.“
What is biochemistry? • Understanding biological forms and functions in chemical terms • Biochemistry aims to understand how the lifeless molecules interact to make the complexity and efficiency of the life phenomena and to explain the diverse forms of life in unifying chemical terms.
Issues addressed by biochemistry • What are the chemical and three-deminsional structure of biomolecules? • How do biomolecules interact with each other? • How does the cell synthesize and degrade biomolecules? • How is energy conserved and used by the cell? • What are the mechanisms for organizing biomolecules and coordinating their activities? • How is genetic information stored, transmitted, and expressed?
History of Biochemistry • First to reveal the chemical composition of living organisms. The biologically most abundant elements are only minor constituents of the earth’s crust (which contains 47% O, 28% Si, 7.9% Al, 4.5% Fe, and 3.5% Ca). The six principle elements for life are: C, H, N, O, P, and S.
Most of the elements in living matter have relatively low atomic numbers; H, O, N and C are the lightest elements capable of forming one, two, three and four bonds, respectively. The lightest elements form the strongest bonds in general.
History of Biochemistry • Then to identify the types of molecules found in living organisms. • Amino Acids • Nucleotides • Carbohydrates • Lipids
History of Biochemistry • Then to understand how the biomolecules make life to be life.
Relationship between Biochemistry and other subjects • Organic chemistry, which describes the properties of biomolecules. • Biophysics, which applies the techniques of physics to study the structures of biomolecules. • Medical research, which increasingly seeks to understand disease states in molecular terms. • Nutrition, which has illuminated metabolism by describing the dietary requirements for maintenance of health.
Relationship between Biochemistry and other subjects • Microbiology, which has shown that single-celled organisms and viruses are ideally suited for the elucidation of many metabolic pathways and regulatory mechanisms. • Physiology, which investigates life processes at the tissue and organism levels. • Cell biology, which describes the biochemical division of labor within a cell. • Genetics, which describes mechanisms that give a particular cell or organism its biochemical identity.
(1) ENERGY, which it must know how to: Life needs 3 things: • Extract • Transform • Utilize
(2) SIMPLE MOLECULES, which it must know how to: Life needs 3 things: • Convert • Polymerize • Degrade
(3) CHEMICAL MECHANISMS, to: • Harness energy • Drive sequential chemical reactions • Synthesize & degrade macromolecules • Maintain a dynamic steady state • Self-assemble complex structures • Replicate accurately & efficiently • Maintain biochemical “order” vs outside
Trick #1: Life uses chemical coupling to drive otherwise unfavorable reactions
Trick #2: Life uses enzymes to speed up otherwise slow reactions
Chemical IsomersInterconversion requires breaking covalent bonds
Biochemical Transformations Fall into Five Main Groups • Group transfer reactions • Oxidation-reduction reactions • Rearrangements (isomerizations) • Cleavage reactions • Condensation reactions
Building block Simple sugar Amino acid Nucleotide Fatty acid Anabolic Catabolic Biomolecules – Structure • Macromolecule • Polysaccharide • Protein (peptide) • RNA or DNA • Lipid
Biosynthesis Requires Simple Molecules to Combine Covalently in Many Ways…
O 3.5 Cl 3.0 N 3.0 C 2.5 1. Relative electronegativities of the two atoms Bond strength includes dependence on High electronegativity = High affinity for electrons • P 2.1 • H 2.1 • Na 0.9 • K 0.8
Common Bond Strengths Approx. Avg. Triple: 820 kJ/mole Double: 610 kJ/mole Single: 350 kJ/mole
Important Biological Nucleophiles:Electron-rich functional groups
In summary… • Tetrahedral carbon has versatile bonding properties • Compounds with many atoms may exist in many isomeric forms • Interconversion requires breaking chemical bonds • Large molecules are built from small ones by making new chemical bonds