1 / 38

Quo vadis matematikaoktatás – avagy – egy számtantanár skrupulusai

Quo vadis matematikaoktatás – avagy – egy számtantanár skrupulusai. Néhány felvételi feladat az elmúlt évekből:. 2004.

toan
Download Presentation

Quo vadis matematikaoktatás – avagy – egy számtantanár skrupulusai

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Quo vadis matematikaoktatás • –avagy – • egy számtantanár skrupulusai

  2. Néhány felvételi feladat az elmúlt évekből: 2004 5. Az ABCD trapéz AB oldalának hossza 12, a CD és az AD oldal hossza is egész szám. Az AD szár merőleges az AB oldalra, és az AD szár F felezőpontjából a BC szár derékszögben látszik. Határozza meg a CD oldal hosszának legkisebb lehetséges értékét, ha CD< AB! 2003 8. Adott egy számtani sorozat. A sorozathoz található olyan p és q valós szám, hogy minden 1-nél nagyobb n természetes szám esetén a) Határozza meg p és q étékét, ha a sorozat egy nem állandó számtani sorozat !

  3. 2002 6. Mely egész számokból álló (x; y) számpárok elégítik ki az alábbi egyenletet? 2001 8. Egy háromszög oldalai: a, b, c. Igazolja, hogy a c oldalhoz tartozó szögfelező hossza:

  4. 1987 8. Igazolja, hogy a háromszög beírható és valamelyik mellé írható köre középpontjait összekötő szakaszt a háromszög köré írható köre felezi!

  5. F az OK szakasz felezőpontja

  6. 2005 emelt szint 6. Tekintsük a valós számok halmazán értelmezett függvényt, ahol p tetszőleges valós szám. a) Mutassa meg, hogy zérushelye a függvénynek ! b) Milyen p értékek esetén lesz a függvény másik zérushelye 1-nél nagyobb ? 7. Oldja meg a valós számok halmazán az alábbi egyenletet:

  7. 2005 (őszi) emelt szint 1. Egy háromszög két csúcsa A(8; 2), B(-1; 5), a C csúcs illeszkedik az y tengelyre. A három-szög köré írt kör egyenlete: a) Adja meg a háromszög oldalfelező-merőlegesei metszéspontjának a koordinátáit! b) Adja meg a háromszög súlypontjának a koordinátáit!

  8. 4.)a) Ábrázolja derékszögű koordináta-rendszerben az b) Adja meg az f függvény értékkészletét! c) A p valós paraméter értékétől függően hány megoldása van az egyenletnek a [0; 7] intervallumon?

  9. Emelt szintű matematika érettségi 2006. május 9.

  10. A PQRS négyszög csúcsai: P(3; -1), Q(1; 3), R(-6; 2) és S(-5; -5). Döntse el, hogy az alábbi három állítás közül melyik igaz és melyik hamis! a) A PQRS négyszögnek nincs derékszöge. b) A PQRS négyszög húrnégyszög. c)A PQRS négyszögnek nincs szimmetria- centruma.

  11. P(3; -1), Q(1; 3), R(-6; 2), S(-5; -5)

  12. a) Ábrázolja függvény-transzformációk segítségével a [-3; 4] intervallumon az hozzárendelési szabállyal megadott függvényt! b) Legyen az f, g és h függvények értelmezési tartománya a valós számok halmaza, hozzá-rendelési szabályuk: , ,

  13. Képezzünk egyszeresen összetett függvényeket a szokásos módon. Például Készítse el – a fenti példának megfelelően – az f, g és h függvényekből pontosan két különböző felhasználásával képezhető egyszeresen összetett függvényeket!

  14. Emelt szintű matematika érettségi 2007. május

  15. a) Ábrázolja a [0; 6] intervallumon értelmezett alábbi f függvényt b) Adja meg az f függvény P(5; -4) pontjában húzott érintőjének egyenletét!

  16. a) Határozza meg az alábbi kifejezés értelmezési tartományát: b) Ábrázolja a [-5; 8] intervallumon az függvényt!

  17. Egy pozitív tagokból álló mértani sorozat első három tagjának összege 26. Ha az első taghoz 1-et, a másodikhoz 6-t, a harmadikhoz 3-t adunk, akkor egy számtani sorozat első három tagját kapjuk. Adjuk meg e számtani sorozat első három tagját!

  18. Az ABC derékszögű háromszög BC befogója 18 cm, CA befogója 6 cm. a) Mekkorák a háromszög szögei? b) A BC befogó egy P pontjára PA = PB. Milyen hosszú a PB szakasz? c) A háromszög síkjára C-ben állított merő-leges egy D pontjára CD = 15 cm. Mekkora az ABCD tetraéder térfogata?

  19. Emelt szintű matematika érettségi 2007. október

  20. a) Oldja meg az alábbi egyenletet a valós számok halmazán: b) Oldja meg az alábbi egyenletrendszert a valós számpárok halmazán:

  21. 1. feladat Az ábrán egy színpad világítását látjuk. A 6 m magas díszletelem közepén van egy 2 m magas ablak. A díszletelem mögött, vele azonos magasságban he-lyeztek el egy R reflektort, mely az ablakon keresztül világítja meg a színpadot. Mi-lyen távol legyen a reflektor a díszlettől, hogy a színpadot pontosan 4 m mélységben vilá-gítsa meg?

  22. 2. feladat Egy görögkeleti templom bejárata fölött látható az alábbi boltív. KétR=120 cm sugarú félkör úgy helyezkedik el, hogy mindkettő illeszkedik a másik középpontjára. Mekkora az egyik félkört kívülről, a másikat belülről, valamint a félkörök átmérő-egyenesét érintő (sárga) körök sugara?

  23. 3. feladat András és Béla örököltek egy téglalap alakú telket, melyet átlója mentén két egyenlő részre osztottak. Mindketten építettek telkükre egy-egy négyzet alapú házat; András telkének sarkába, Béla pedig az átfogóra illeszt- ve. Melyikük házának nagyobb az alapterü-lete?

  24. 4. feladat Egy óbudai kiskocsmában a teríték melletti négyzet alakú szalvétát úgy hajtották össze, hogy annak A csúcsa a BC oldal F felezőpontjába került. Igazoljuk, hogy a keletkező EQ szakasz hossza egyenlő az FCE háromszög beírható körének a sugarával!

  25. 5. feladat Egy régi könyvben olvastuk: „Lészen egy háromszeglemény, melliknek is beltzirkulátziójának tzentrálisán s nehézkedési tzentrálisán általvisitáló léniája paralell vala egyvalamely gyepüléniával. Igazoltassék, hogy emez triangulum gyepüléniáinak mértékit az Úr az ő nagy bötsességében az számtani haladvány szerint valónak alkotá!”

More Related