220 likes | 721 Views
Prąd elektryczny. Opór elektryczny. Opór elektryczny. Na początku XIX wieku Georg Ohm stwierdził, że natężenie prądu w metalach jest proporcjonalne do przyłożonego napięcia — o ile w trakcie pomiarów utrzymuje się stałą temperaturę metalowej próbki. Opór elektryczny.
E N D
Prąd elektryczny Opór elektryczny
Opór elektryczny Na początku XIX wieku Georg Ohm stwierdził, że natężenie prądu w metalach jest proporcjonalne do przyłożonego napięcia — o ile w trakcie pomiarów utrzymuje się stałą temperaturę metalowej próbki.
Opór elektryczny - + I S E L Mamy pewien przewodnik jak na rysunku. Teoretycznie elektrony przewodnictwa mogą przebyć odległość równą wielu średnicom atomów (średnią wartość tej odległości oznaczymy przez L) zanim zderzą się z jakimś atomem. Średni czas między zderzeniami będzie więc dany wzorem
Opór elektryczny Po przyłożeniu napięcia na elektrony działa siła F = eE nadająca przyspieszenie zgodnie z II zasadą Newtona Elektrony ulegają ciągłym zderzeniom, co powoduje że pomiędzy zderzeniami prędkość zmienia się o a, czyli prędkość unoszenia. gdzie zwane jest ruchliwością elektronów [m2/Vs]
Opór elektryczny Tak więc prędkość unoszenia możemy zapisać Na podstawie wyrażenia na natężenie prądu oraz prędkości unoszenia otrzymamy I U S l Następnie weźmy odcinek obwodu o długości l. Spadek napięcia na tym elemencie wynosi wstawiamy do wyrażenia na I:
Opór elektryczny I tak po żmudnych przekształceniach wykorzystując I podstawiając ostatnie wyrażenie na I możemy stwierdzić, że Opór elektryczny jest wprost proporcjonalny do długości przewodnika i odwrotnie proporcjonalny do pola powierzchni przekroju poprzecznego. Wyrażenie pełniące funkcje współczynnika proporcjonalności jest oporem właściwym (rezystywnością), której jednostką jest [m]
Opór elektryczny Opór elektryczny danego przewodnika tak długo się nie zmieni jak długo pozostanie stały opór właściwy. A to z kolei jest uwarunkowane niezmienniczością temperatury. Często posługiwać się możemy przewodnictwem właściwym (konduktywnością)
Opór elektryczny Kiedy następuje zmiana temperatury przewodnika, jego opór właściwy zmienia się według wzoru: Wielkości z indeksem 0 są podawane dla temperatury 273K , Współczynnik temperaturowy oporu możemy wyliczyć z wyrażenia: Ponieważ niewiele się on różni od wartości 1/273K co charakteryzuje termiczny współczynnik rozszerzalności gazów opór właściwy możemy zapisać w postaci
Opór elektryczny Metal Półprzewodnik Nadprzewodnik ZależnoŚĆ oporu właściwego od temperatury T T T
Opór elektryczny Zależność natęŻenia prądu od napięcia • I I • Metal dioda próżniowa • U U • I I • Elektrolit termistor • U U
Opór elektryczny a moc Jeżeli do źródła energii elektrycznej podłączymy odbiornik, wówczas w jego wnętrzu następuje przenoszenie ładunku dq w przedziale czasu dt o wartości Idt. Towarzyszy temu spadek potencjału co z kolei pociąga za sobą spadek energii potencjalnej Energia nie znika oczywiście ale przekształca się inną formę, co odbywa się dzięki mocy Jeżeli dołączonym elementem jest opornik energia potencjalna zamienia się w ciepło Joule’a
Opór elektryczny a moc James prescottjoule Heinrich Lenz
Opór elektryczny a moc Ilość ciepła wydzielanego w czasie przepływu prądu elektrycznego przez przewodnik elektryczny jest wprost proporcjonalna do iloczynu oporu elektrycznego przewodnika, kwadratu natężenia prądu i czasu jego przepływu Wynika to ze wzoru na energię po uwzględnieniu prawa Ohma Taki sam zabieg powoduje, że oprócz podstawowego wzoru na moc prądu otrzymujemy również oraz Oba wyrażenia mówią o rozpraszaniu energii w oporniku i stosujemy je tylko przy zamianie energii elektrycznej na cieplną przy określonym R.
Dziękuję za uwagę Tadeusz Bielecki