1 / 36

EBIS Injector Linac Optics I

EBIS Injector Linac Optics I. D.Raparia EBIS Review 2005/01/27-28. LEBT RFQ MEBT LINAC. Acknowledgements. Contributors: J. Alessi, E. Beebe, S. Pikin, A. Kponou , J. Ritter, C. Gardner, S. Y. Zhang, T. Roser B. Schlitt, U. Ratzinger. Requirements.

tudor
Download Presentation

EBIS Injector Linac Optics I

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. EBIS Injector Linac Optics I D.Raparia EBIS Review 2005/01/27-28 • LEBT • RFQ • MEBT • LINAC 2005/01/27-28 EBIS Review

  2. Acknowledgements Contributors: J. Alessi, E. Beebe, S. Pikin, A. Kponou, J. Ritter, C. Gardner, S. Y. Zhang, T. Roser B. Schlitt, U. Ratzinger 2005/01/27-28 EBIS Review

  3. Requirements • EBIS based linac should provide all the ions species which presently Tandem provides * Out of EBIS Linac scope 2005/01/27-28 EBIS Review

  4. Proposed Linac –Based RHIC Preinjector 4 m 4.4 m MEBT HEBT LEBT RFQ: 17 - 300 keV/u; 100 MHz IH Linac: 0.3 - 2.0 MeV/u; 100 MHz 2005/01/27-28 EBIS Review

  5. Schematic of Ion Injection and Extraction from the RHIC EBIS (LEBT) 2005/01/27-28 EBIS Review

  6. Parameters Beginning of LEBT (5 keV/u) Middle of LEBT17keV/u End of LEBT Units x -5.3 2.02 1.057 x 0.800 6.04 0.064 mm/mrad x (4 rms, unnorm) 152 85 85  mm mrad y -5.3 2.02 1.057 y 0.80 6.04 0.064 mm/mrad y(4 rms, unnorm) 152 85 85  mm mrad LEBT Requirements -Inject into EBIS -Extract from EBIS -Acceleration -Diagnostics: Emittance Monitor, Current Monitor(2), TOF -Matching into RFQ Twiss parameters at beginning and end of the LEBT for Au+32 E = 5 keV/u =0.0033 =1.000005 E = 17 keV/u =0.006017 =1.000018 D. Raparia

  7. Charge State Distribution Computer calculation of successive ionization of Au with a 20keV electron beam: D. Raparia

  8. Space Charge in LEBT Current 10 mA, R=20 mm ** I =6 mA *EPS(n, rms)=0.125  mm mrad Measurement for 1.7 mA Au+25 (n,rms) =0.1  mm mrad @ 20keV Simulated(n,rms) =0.125  mm mrad Envelope equation Energy = 17 keV/u =0.006017 =1.000018 R= 20 mm Debye Length(D) = 2 2rms/K Gen. Perv. (K)= QI/(2  0 m c3 33) D. Raparia

  9. L 2R LEBT Energy • Distance needed between two lenses for external ion injection (L) ~ 0.8 m. • Beam radius (R) ~ 2.0 cm, Lenses (solenoid) aperture radius 5 cm • Maximum beam current for SC dominated drift (L), maximum beam radius (R) and initial slop R’0=-0.92 given by • Imax(A)=1.166*(mc2/30*q)*3 3 (R/L)2 R’0=-0.92 D. Raparia

  10. Investigated possible layouts for LEBT Magnetic: Lower aberrations, need higher filed, separates charge estate Electrostatic: Chromatic aberrations, screen reduce aberrations but also reduces intensity. D. Raparia

  11. Starting Conditions for LEBT EBIS simulation by code TRAK (Kponou) generate input parameters for ion extraction/ acceleration for LEBT E = 5 keV/u =0.0033 =1.000005 B=0.15 T e Starting Conditions R= 0.5 mm R’ () 2.5 Rad ions DT12 D. Raparia

  12. LEBT Simulation in Two Parts • Extraction/acceleration and LEBT simulation has been done in two part • extraction/ acceleration and grid lens are electrostatic and are simulated with • AXCEL with full space charge • (2) Later part of the LEBT consist of solenoid lens is simulated with TRACE • with linear space charge Magnetic Trace Electrostatic AXCEL Electrostatic D. Raparia

  13. Electrode Voltage (kV) Extraction/Acceleration V1 -8 V2 +76 V3 0 Grid Lens V4 0 V5 -21 V6 0 V1 V2 V4 V5 V6 V3 LEBT Electrostatic 5 kev/u 4 keV/u 15 keV/u 17 kev/u Au+32 D. Raparia

  14. LEBT Solenoid • Scrivens @ CERN has reported • hollow beam in solenoid transport • (Reproduced this in our codes) • Codes did not show hollow beam • for our case Np R (mm) TRACE2D E=8.5 keV/u,I=2mA B=7.8 kG L=37.1 cm Np Np R (mm) R (mm) D. Raparia

  15. Ions E (MeV) Curr (mA) Tran (%) X-XP 5 rms, Unnor, ( mm mrad) Y-YP 5 rms, Unnor, ( mm mrad)       Au+32 3.2 10.0 100 1.06 0.063 125 1.06 0.06 125 Au+31 3.1 10.0 100 0.994 0.063 125 0.994 0.063 125 Au+30 3.0 10.0 100 1.111 0.094 125 1.111 0.094 125 Au+33 3.3 10.0 100 1.118 0.057 125 1.118 0.057 125 Au+34 3.4 10.0 100 1.432 0.119 125 1.432 0.119 125 He+2 0.68 10 100 1.06 0.064 125 1.60 0.064 125 Beam Parameters at End of LEBT Phase space ellipses at end of the LEBT For different charge state of gold D. Raparia

  16. RFQ Parameters -Proven technology, No risks -Can accelerate He- Au (Present thinking- collaboration Frankfurt on a 4-rod RFQ D. Raparia

  17. RFQ Beam Dynamics Design PARMTEQ Transmission: Au+32 91% (10 mA) 4He+2 91 % (10 mA) 3He+2 88% (2 mA) P 65% (2 mA) D. Raparia

  18. Beam envelopes for Au+31(example of neighboring charge state) D. Raparia

  19. RFQ Transmission RFQ transmission vs Input Emittance RFQ transmission for different charge state of gold RFQ transmission vs input voltage error (Nominal operating voltage 100 kV) RFQ Transmission vs input Current D. Raparia

  20. Long. Emittance Growth vs Energy Spread D. Raparia

  21. Ions Energy (MeV) Curr (mA) Tran (%) X-XP 5 rms, Unnor ( mm mrad) Y-YP 5rms,Unnor,( mm mrrad)  5 rms, MeV deg)   (m)    (m)    (deg/MeV)  Au+32 62.00 10 91 1.8 0.180 24 -1.59 0.142 22.5 -0.22 13.3 32.5 Au+31 61.08 10 86 1.6 0.152 27 -1.25 0.138 20.5 -0.04 27.1 40.3 Au+30 62.08 10 55 1.6 0.162 30 -1.16 0.138 20 0.97 27.5 105 Au+33 61.87 10 58 1.5 0.164 26 -1.05 .108 21 -0.08 17.2 40.9 Au+34 10 0 He+2 1.259 10 91 1.7 0.28 24.5 -0.86 0.117 25.5 -0.13 615.9 1.055 Twiss Parameters at End of RFQ Simulation show no emittance growth for Au+32 X-XP Plane Y-YP Plane  Plane D. Raparia

  22. Requirements for MEBT • Matching from FODO (RFQ) to axial symmetric IH structure with Solenoids • Diagnostics; Current monitor(2) , Emittance • Twiss parameters at beginning and end of the MEBT D. Raparia

  23. Space Charge In MEBT * EPS(N, rms)=0.125 Energy = 300 keV/u =0.025272 =1.000319 R= 3 mm I=5 mA D. Raparia

  24. Transport from RFQ to Linac(5 quads, 1 buncher) Au+32 Q1 (pmq) 101 T/m Q2 (EM) 33 T/m Q3 (EM) 38 T/m Q4 (EM) 36 T/m Q5 (EM) 38 T/m B1 150 kV EM quads same as SNS MEBT quads Au+32 Au+31 Au+33 Au+30 Au+29 XI= 1.8*0.9 + 1.5*0.86 + 1.5*0.58* + 1.2*.55 + 0.8*.24=4.6 mA D. Raparia

  25. IH Linac IH Linac very similar to the first tank of the CERN Pb linac, is our baseline: , (Present thinking – collaboration with GSI on an IH Linac) D. Raparia

  26. IH linac optics codes LORAS used in this preliminary design Au+32 Longitudinal profiles in the IH linac Transverse profiles in the IH linac Current = 4.6 mA 2005/01/27-28 EBIS Review

  27. IH Linac Input and Output Emittances Au+32 I=4.6 mA Input Output  N, 98% N, 98% % X-XP( mm mrad) .55 .66 20 Y-YP ( mm mrad) .54 .67 24 (( ns/keV/u) .92 1.32 41 2005/01/27-28 EBIS Review

  28. Beam envelopes for Au+30 (example of neighboring charge state) Longitudinal profiles in the IH linac Transverse profiles in the IH linac 2005/01/27-28 EBIS Review

  29. Ions Curr. (mA) Trans. (%) X-XP Unnorm, 5rms ( mmmr) Y-YP Unnorm, 5 rms (mmmr)  5 rms( MeV deg)   (m)    (m)    (deg/MeV)  Au+32 4.6 100 2.1 1.97 11.0 -1.59 3.45 10.3 -0.68 5.4 35.0 Au+31 4.6 55.8 1.01 0.60 41.0 0.025 1.47 31.3 5.21 14.5 90.72 Au+30 4.6 0 Au+33 4.6 85 1.77 2.73 11.2 -1.12 3.61 10.0 0.71 3.5 54.8 Au+34 He+2 10 85 1.56 1.0 10.44 0.28 1.5 9.7 0.8 1.2 15 Twiss Parameters End of Linac Current Out =1.8*0.9*1.0 + 1.5*0.86*0.56 + 1.5*0.58*0.85=3.1 mA X-XP Plane Y-YP Plane  Plane 2005/01/27-28 EBIS Review

  30. Emittance for Linac (Au+32) *Booster requirement 2keV/u Measurements: 0.1 (N, rms) ( mm mrad) Au+25 (all charge states) 1.7 mA Though simulations show only 22% transverse emittance growth, we have designed for 100% emittance growth from EBIS to Booster. 2005/01/27-28 EBIS Review

  31. Continue Part II 2005/01/27-28 EBIS Review

  32. Superconducting Linac Option • Allow acceleration of higher energies(> 6MeV/u for q/m=0.5) for higher q/m ions • Base on ALPI, ISAC-II and RIA, Technology • Two type of cavity  ~0.04 and 0.08 Optimization of  for maximum energy gain per cavity The ALPI resonator 2005/01/27-28 EBIS Review

  33. Parameter Values Units Q/m 0.16-0.67 Input energy 0.300 MeV/amu Output Energy 2-7.5 MeV/amu Frequency 101.28 MHz Max rep rate 10 Hz Input emittance 0.55  mm mrad, norm,90% Output emittance ~ 0.6  mm mrad, norm,90% Transmission 100 % SCL Parameters • -Accelerating Gradient 7MV/m • -Helium Consumption • >7 Watt at 4.2K / resonator • Energy gain • 5MeV/charge/cryostat • -Three cryostats to produce • 15 MeV for the SCL 2005/01/27-28 EBIS Review

  34. TRACE Simulation for SCL(AU) 2005/01/27-28 EBIS Review

  35. TRACE Simulation for SCL(D) 2005/01/27-28 EBIS Review

  36. L 2R Slop =0.92 2005/01/27-28 EBIS Review

More Related