540 likes | 557 Views
This article discusses the KEKB accelerator and Belle detector, highlighting their design, achieved luminosity, and future upgrades. It explores the use of crab cavities for beam stability and the capabilities of the Belle detector for particle identification and CP violation measurements. Additionally, it explains the extraction of the angle gamma (γ) using the Wolfenstein parameterization and GLW method.
E N D
KEK-B accelerator Two separate rings: 8GeV(e-)/3.5GeV(e+) Finite crossing angle Design luminosity = 1034 cm-2sec-1 Achieved lum =1.06 1034 cm-2sec-1 Belle logged: 158 fb-1 KEKB Collider
Future upgrade planned for 2005 [luminosity:factor of 2 ] For a finite crossing angle Geometrical luminosity loss Beam instability Without crab cavities: 22mrad With crab cavities: Complete overlap of beams Crab cavities Head-on collision
Belle Detector Aerogel Cherenkov cnt. n=1.015~1.030 SC solenoid 1.5T 3.5GeV e+ CsI(Tl) TOF counter 8GeV e- Tracking + dE/dx Si vtx. det. 3 lyr. DSSD m / KL detection 14/15 lyr. RPC+Fe
Particle identification • Particle identification: ACC, TOF , dE/dx from CDC PID(K) = = pKdE/dx pKTOF pKACC • Very good in a wide momentum range
Upgrade (fall-2003): New beam-pipe SR mask SR mask No SR mask New beam-pipe is longer , 16cm 24cm
Upgrade (fall-2003): New beam-pipe HER Downstream Double walled Be beampipe HER QCSLE LER mask LER QC2 QCSRP QC1 BC3 HER Upstream Removed for new beam-pipe
Upgrade (fall-2003): New beam-pipe SR mask SR mask No SR mask New beam-pipe is longer , 16cm 24cm
Upgrade (fall-2003): cont… • More synchrotron radiation protection LER HER QC1 QC2 LER mask BC3 Saw tooth shape No SR hits Beam-pipe
Upgrade (fall-2003): New beam-pipe SR mask No SR mask New beam-pipe is longer , 16cm 24cm
Upgrade (fall-2003): SVD2 • Increase the number of layers , 3 layers 4 layers • smaller radius for inner-most layer • Better vertex resolution ( 1/distance 1st detection layer)
CP violation and Unitarity of CKM matrix What is ? g
Standard Model lagrangian for q-W interaction Lint(t) = d3x (LqW(x) + L†qW(x)) LqW(x)= VijUi ( 1- 5) Dj W Dj (x ) = Ui (x ) = V= (CKM matrix) Experimentally, V has a hierarchical structure. ( = 0.22)
Transformation of Lint under CP exchanges particle (n) antiparticle ( n ) CP: flips momentum sign ( p -p ) keeps the spin z-component () the same under CP, LqW transforms as CP LqW(x) P†C† = ud Vij (Ui (x’) ( 1- 5) Dj(x’) W(x’))† * x ’ =( t , -x) If ud can be chosen such that ud Vij = Vij * (1) * * Then, Lint(t) becomes invariant under CP: • CP LqW(x) P†C† =L†qW(x) • CP Lint(t) P†C† = d3x CP (LqW(x) + LqW(x)) P†C† = d3x (LqW(x) + LqW(x) ) = Lint(t)
Condition for CP invariance ud Vij = Vij * * Condition (1) is equivalent to rotating the quark phases to make Vij all real In general, there are 5 phase differences for 6 quarks 5 elements of VCKM can be set to real always + 3 phases can be related to Euler angles There is one phase which cannot be removed CP violation
Wolfenstein parameterization Wolfenstein parameterization
What is the angle ? Orthogonality of d-colmn and b-column: * * * VudVub + VcdVcb + VtdVtb = 0 ⃔ * * VtdVtb VudVub ⃔ ⃔ * VcdVcb a * ⃔ = arg b * -b = arg CKM fitter: 39° 80° @ 95% C.L
Methods to extract the angle s u b - K - Vub o - - D u c Vcb b - c B - s o B D - K - - - - u u u u • One needs interference between D0K- and D0K- D0 and D0 decay to common final state Example: K+K-, KS0 etc ( CP eigenstates) KS+- Dalitz analysis K*K (singly Cabibbo suppressed mode) K+- ( doubly Cabibbo suppressed mode) I will discuss
(*)- B -> D K - - CP (Gronau , London and Wyler) PLB 253(1991)483 PLB 265(1991)172
Gronau-London-Wyler method to extract - B- DCPK- where Dcp (D0 ± D0 ) - • Amp(B- DCPK-) = Amp(B- D0K-) + Amp(B- D0K-) - KS0, KS, KS, KS, KS’ K+K-, +- D0 and D0 CP + modes 2 diagrams CP - modes s u b - K - Vub o - - D u c Vcb - b B c s * o - =arg(Vub) D - B K - - - - u u u u Color-favored Color-suppressed ~ Vcb ~Vub
GLW method cont… Strong final-state-interaction phase: B- D0K- relative to B- D0K- isei _ _ • Amp(B- DCPK-) = |Amp(B- D0K-)| + |Amp(B- D0K-)| ei(+) _ • Amp(B+ DCPK+)= |Amp(B+ D0K+)| + |Amp(B- D0K+)| ei(-) — A(B- D0K-) A(B- DCPK-) — A(B- D0K-) = A(B+ D0K+) - A(B+ DCPK+) A(B+ D0K+)
GLW method cont… _ • Amp(B- DCPK-) = |Amp(B- D0K-)| + |Amp(B- D0K-)| ei(+) _ • Amp(B+ DCPK+)= |Amp(B+ D0K+)| + |Amp(B- D0K+)| ei(-) — A(B- D0K-) A(B- DCPK-) — A(B- D0K-) = A(B+ D0K+) - A(B+ DCPK+) A(B+ D0K+) Reconstruct the two triangles Non-vanishing strong phase ( 0) Direct CP violation
GLW method cont… One can measure even if =0( No strong phase) no direct CPV One needs to measure the sides and reconstruct triangle — A(B- D0K-) A(B- DCPK-) — A(B- D0K-) = A(B+ D0K+) - A(B+ DCPK+) A(B+ D0K+)
Problem: Color-suppressed mode B- D0K- B- D0K- and K+- K+- — A(B- D0K-) How to measure ? - Ratio of amplitudes ~ 1 Good or Bad ? Method of Atwood, Dunietz and Soni
Theoretical solution One can instead measure: R1,2 = DCP Dnon-CP R /R = 1 + r2 2r cos()cos() B(B- D1,2K-) + C.C DCP where R = B (B- D1,2-) + C.C R1 + R2 = 2( 1 + r2) r = |BKD|/|BKD| 2 In principle one can obtain r Useful inequality: Sin2 < R 1,2 R1 or R2 < 1.0 (assuming small r )
Solution - B (B- D1,2K-) B(B+ D1,2K+) 2r sin()sin() A1,2 = = R1,2 + B (B- D1,2K-) B (B+ D1,2K+) 4 measurements : A1,2 and R1,2 But A1R1= - A2R 2 r = |BKD|/|BKD| 3 independent measurements 3 unknowns ( r , , ) Solve !
Variables to identify signal B f1….. fn Energy and absolute value of momentum is known: EB = Ebeam = 5.29 GeV E PB = = 0.34 GeV/c • Requires that the candidates satisfy EB = |PB| =| | Mbc Peaks at: 0.0 GeV 5.279 GeV Instead of EB and PB , we historically use Energy difference M ~ 2.5 MeV ~ 10 better inv mass Beam constrained mass bc
Hadronic cross sections @(4S) peak energy channel (nb) 1.05 1.39 0.35 0.35 1.30 (4S) uu dd ss cc Hadronic total 4.44 ~ 76% is qq 2 jet-type (“ continuum events”) The continuum is monitored by taking data just below the (4S) resonance (60 MeV) off (4S) x on (4S)(Belle) KEK-B operates here • Rare decay background is usually dominated by continuum
Suppressing continuum events • Variables to distinguish signal from continuum events • CosB signal ~ sin2 continuum ~ flat B B e+ e- Continuum BB Signal
Suppressing continuum signal • Fisher discriminant of variables x = (x1…….xn) • F = .x : constants to be chosen to maximize separation(S)between signal and background , S = func (FS , FB ) • = 0 continuum Xi = Fox-Wolfram moments continuum signal Get values of ’s
Suppressing continuum Most effective way to suppress the continuum events Combine Fisher discriminant(F) and cosB Likelihood ratio (LR) _ _ L(BB) LR(BB) = _ L(BB) + L(qq) continuum _ _ _ signal L(BB) = L(BB)(F) x L(BB)(cosB) _ { 0 for continuum events _ LR(BB) peak at: 1 for signal(BB) events Performance( B- D0[K-+]- ) : LR > 0.4 keeps 87.5% signal removes 73% continuum LR
Results for calibration mode B- D0K-(-) @78fb-1 /K separation by Aerogel Cherenkov Counter ( with dE/dx, and TOF) Prompt Kaon is reconstructed with pion mass assumption shifts E by -49 MeV Allows simple cuts/fits : B- D0 K- B- D0 - 347.5±21 6058±88 B- D0 - 134.4±14.7 B-D0*-, D0- continuum B-D0*K-, D0K*- D00, D0 D00, D0 R = = 0.077 ± 0.005(stat) ± 0.006(sys)
Results for B- D1K-(-) mode CP-even For B- D0[K+K-]K- B- D0[+-]K- 23 background 100 B- K+K-K- B- K-+- Can be estimated from D0 sideband data included in systematic error 47.3±8.9 683.4±32.8 15.6±6.4 R = =0.093±0.018±0.008 Double ratio R1 = 1.21 ±0.25 (stat)±0.14 (sys) 22.1±6.1 25±6.5 CP asymmetry A1 = +0.06 ± 0.19 (stat)±0.04(sys)
Results for B- D2K-(-) mode CP-odd For B- D0[KS]K- where +-0 background For B- D0[K*-+]K- where K*-KS- and + +0 KS- invariant mass difference> 75 MeV 52.4±9.0 648.3±31.0 R = =0.108±0.019±0.007 6.3±5.0 Double ratio R2 = 1.41 ±0.27 (stat)±0.145(sys) 29.9±6.5 20.5±5.6 CP asymmetry A2 = - 0.19 ± 0.17 (stat)±0.05(sys) A1,2and R1,2 are useful quantities for determining
Measuring using B- DCPK- mode Using the measured value of and R1,2 A1,2 We find: R1 R2 r = |BKD|/|BKD| r2 = = 0.31 0.21 2 Just 1.5 away from physical boundary: r2 =0 otherwise r would be imaginary A lot more statistics needed for this method to be useful This corresponds to r = 0.57 0.19 very unlikely (theory: 0.1 0.2)
Measurement of “r” s u b - K - Vub o - - D u c Vcb b - c B - s o D - B K - - - - u u u u r =
Measurement of “r” using B0 D0K0 mode s c b K- o - D - Vcb Vcb u u o B b o B- c o K D s - - - - u u d d BF(B0D0K0)=(5.0±1.3) 10-5 r = (CKM factor)(color factor) r 0.2 0.45 ?? Color factor= ~ ~ 0.4
Measuring using B- DCPK- mode Assume we measured r = 0.2 , what would be? A1,2 =0 R1,2 = 1.4 1 + r2 2r cos()cos() |A1,2|=0.25 1.2 R2(-1) A1,2 = 2r sin()sin() R1,2 1.0 R1(-1) R1,2 Taken from Gronau 0.8 A1,2 =0 0.6 (degrees) At 1, the angle <33 or > > Excluded by CKM fit
*- Additional modes: B- DCPK mode Same principle as B- -> DCPK- decay: K- to be replaced by K*- First step: Flavor specific modes D0 K-+ , K-+0 , K-+-+ Only KS- is used (K-0 could be included worry: handling background) 169.5±15.4 16
*- Consistency check: B- D0K mode Yields in KS- mass and helicity bins • Points with error bars data • • Hatched histogram Signal Monte Carlo Fit to E for each bin
*- B- DCPK mode 13.1 ± 4.3 B- D1K*- 4.3 7.2 ± 3.6 2.4 B- D2K*- A1 = -0.02 ± 0.33(stat) ± 0.07(sys) CP asymmetries : A2 = 0.19± 0.50(stat) ± 0.04(sys) Cannot now constrain -> need more data
Additional modes: Atwood, Dunietz and Soni method K- K- Doubly Cabibbo Suppressed Cabibbo Allowed K+- D0 D0 1 Maximum Interference B- B- Measure B- DK- in two decay modes of D: e.gK+- and KS0 ( their CP conjugates) [B- (K+-)K-] [B+ (K-+)K+] [B- (KS0)K-] [B+ (KS0)K+] Solve for , , and r K+- KS0
Additional modes: ADS method @78fb-1 Only ~ 10-12 events, Cabibbo-suppressed D0K down by ~1/15 E E Promising method but requires lots & lots of data
B-D0(KS+-)K- Dalitz analysis - Previously: B- DCPK- where DCP =(D0 D0 ) both D0 and D0 decays to CP eigenstates ( K+K-..) - D0K0p+p- DKSp+p- D0K0p+p- Amp(B+ ->DK+) = f(m+2,m-2) + r. ei( + ) f(m-2 , m+2 ) where m+/-2= M2(KS+/-) r = |BKD|/|BKD| f( m+2,m-2) = ak. ei Ak(m+2,m-2) + b ei -> both 2-body resonances and non-res component
Simple example Suppose allDKS+p- decays are via K*p D0K*+p- D0K*-p+ KS p+ KS p- M(KS p+)2 Dalitz plot interference M(KS p-)2
Reality is more complex ( & better) D0KS p+p- many amplitudes & strong phases(13) lots of interference K*p KSs KSf2 KSr