1 / 16

Investigation of Tuning Schemes of High-Q Ferrite-Loaded Cavities

Investigation of Tuning Schemes of High-Q Ferrite-Loaded Cavities. Johannes Eberhardt CERN, Beams Department / TU Darmstadt, TEMF Institute. Presentation of PhD Project 01.03.2013 – 29.02.2016 CERN Supervisor: Dr.-Ing. Christine V öllinger TEMF Supervisor: Prof. Dr.-Ing. Harald Klingbeil.

winka
Download Presentation

Investigation of Tuning Schemes of High-Q Ferrite-Loaded Cavities

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Investigation of Tuning Schemes of High-Q Ferrite-Loaded Cavities Johannes Eberhardt CERN, Beams Department / TU Darmstadt, TEMF Institute Presentation of PhD Project 01.03.2013 – 29.02.2016 CERN Supervisor: Dr.-Ing. Christine Völlinger TEMF Supervisor: Prof. Dr.-Ing. Harald Klingbeil 29. Oktober 2013 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Johannes Eberhardt | 1

  2. Tuning Schemes of Ferrite Cavities • Motivation • State of the art • Scope of the work • First results for G-510 material characteristics • Next steps and challenges 29. Oktober 2013 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Johannes Eberhardt | 2

  3. Motivation – Which Application? • CERN injector complex update programme • PS2: novel accelerating cavity with 18 – 40 MHz tuning range required 29. Oktober 2013 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Johannes Eberhardt | 3

  4. Motivation – How does an Accelerating Cavity work? accelerating gap cylindrical structure beam pipe HRF ERF λ/4 29. Oktober 2013 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Johannes Eberhardt | 4

  5. Motivation – Why Ferrite Loaded? Tuning 18 – 40 MHz → ferrite ring 29. Oktober 2013 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Johannes Eberhardt | 5

  6. State of the Art – Examples 29. Oktober 2013 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Johannes Eberhardt | 6

  7. State of the Art – Parallel Biasing • μr ~ slope of tangent line • increasing H1ll to H2ll shifts μr,1to μr,2 29. Oktober 2013 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Johannes Eberhardt | 7

  8. State of the Art – Perpendicular Biasing • μr ~ slope of secant from origin to B-Hcurve. • Higher Magnetic Field strength needed • Operating point is closer to saturating magnetization 4πMs reduced RF losses and higher Q values. 29. Oktober 2013 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Johannes Eberhardt | 8

  9. State of the Art – 2 Directional Biasing • First applying H1⊥→ operating point close to saturating magnetization • Rotating direction to H2ll→ modest increase in bias field 29. Oktober 2013 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Johannes Eberhardt | 9

  10. Scope of the Work – Overview Developing an accelerating cavity with 18 – 40 MHz tuning range using a simulation tool • Characterize dispersion of G-510 • Verify results by simulation • Characterize bias field dependence of G-510 • Verify results by simulation • Elaborate simulation model for perpendicular biasing to give an estimation of frequency range • Decision if perpendicular biasing is sufficient 29. Oktober 2013 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Johannes Eberhardt | 10

  11. First Results – G-510 Coaxial short-circuit technique to determine • Measuring S11 for empty and filled sample holder • Analytical calculation of (S11) for sample holder 29. Oktober 2013 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Johannes Eberhardt | 11

  12. First Results – Verification by Simulation Simulation of sample holder with (f) and (f) as input 29. Oktober 2013 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Johannes Eberhardt | 12

  13. First Results – G-510 Same method but for different bias field = 13.0 = 2.0 ≈ 6.5 29. Oktober 2013 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Johannes Eberhardt | 13

  14. First Results – Verification by Simulation Simulation of sample holder with (f) and (f) for = 200A 29. Oktober 2013 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Johannes Eberhardt | 14

  15. Scope of the Work – Overview First Results: • Characterize dispersion of G-510 • Verify results by simulation • Characterize bias field dependence of G-510 • Verify results by simulation Next steps: • Elaborate simulation model for perpendicular biasing to give an estimation of frequency range • Decision if perpendicular biasing is sufficient 29. Oktober 2013 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Johannes Eberhardt | 15

  16. Thank you for your attention! 29. Oktober 2013 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Johannes Eberhardt | 16

More Related