510 likes | 647 Views
Cl a ss 5: A t t ri b utes and S e mant i c F e a tu r es R o g e rio F e ris, F e b 21, 2013 E E CS 6890 – T o p ics in I n f orm a tion P r o ce ss i n g Spr i ng 2013, Co l um b i a Un i v e r sity h t tp:// r o g er i o f er i s . c om/Visual R e c og n i t i onA n dS e a r c h.
E N D
Class5:AttributesandSemanticFeatures Rogerio Feris, Feb21, 2013 EECS 6890–Topicsin InformationProcessing Spring2013, ColumbiaUniversity http://rogerioferis.com/VisualRecognitionAndSearch
ProjectReport Thanksforsendingtheprojectproposals! Projectupdatepresentations(10min pergroup) March14 April11 Details will beprovidedin the coursewebsite VisualRecognition And Search ColumbiaUniversity, Spring 2013
Plan for Today IntroductiontoSemanticFeatures Attribute-basedClassificationand Search Attributesfor Fine-Grained Classification RelativeAttributes ProjectProposal Presentations VisualRecognition And Search ColumbiaUniversity, Spring 2013
Semantic Features Usethescores of semanticclassifiersas high-levelfeatures InputImage Off-the-shelf Classifiers … SandClassifier WaterClassifier SkyClassifier Score Score Score Compact/ powerful descriptor withsemantic meaning(allows “explaining”thedecision) SemanticFeatures BeachClassifier VisualRecognition And Search ColumbiaUniversity, Spring 2013
Semantic Features(Frame-Level) IllustrationofEarly IBMwork(multimediacommunity)describing this concept [JohnSmith etal,MultimediaSemanticIndexing UsingModelVectors, ICME 2003] Concatenation/DimensionalityReduction VisualRecognition And Search ColumbiaUniversity, Spring 2013
Semantic Features(Frame-level) Systemevolvedtothe IBMMultimediaAnalysisand Retrieval System(IMARS) [RongYanet al,Model-SharedSubspace BoostingforMulti-labelClassification,KDD2007] Discriminativesemanticbasis Ensemble Learning Rapid eventmodeling, e.g.,“accidentwith high- speedskidding” VisualRecognition And Search ColumbiaUniversity, Spring 2013
Classemes (Frame-level) Descriptor isformedbyconcatenating theoutputsofweakly trained classifierscalledclassemes(trained withnoisy labels) [L.Torresanietal,EfficientObjectCategoryRecognitionUsingClassemes,ECCV2010] Imagesusedtotrain the“table”classeme(from Googleimage search) Noisy Labels VisualRecognition And Search ColumbiaUniversity, Spring 2013
Classemes (Frame-level) CompactandEfficientDescriptor,usefulfor large-scale classification Featuresare notreallysemantic! VisualRecognition And Search ColumbiaUniversity, Spring 2013
Semantic Features(Object Level) Object Bank [Li-JiaLietal,ObjectBank:AHigh-LevelImageRepresentation forSceneClassificationandSemanticFeatureSparsification] http://vision.stanford.edu/projects/objectbank/ State-of-the-artscene classificationresults (~7secondsperimage) VisualRecognition And Search ColumbiaUniversity, Spring 2013
Semantic Attributes Describing Naming ? Bald Beard RedShirt Modifiersrather than (or inaddition to)nouns Semanticpropertiesthat areshared amongobjects Attributesarecategory independentand transferrable VisualRecognition And Search ColumbiaUniversity, Spring 2013
Attribute-Based Search VisualRecognition And Search ColumbiaUniversity, Spring 2013
PeopleSearch in SurveillanceVideos TraditionalApproaches:FaceRecognition(“Naming”) Facerecognitionisverychallengingunderlightingchanges,posevariation,andlow- resolutionimagery(typicalconditionsinsurveillancescenarios) Attribute-basedPeople Search(“Describing”) [Vaqueroetal,Attribute-basedPeopleSearchinSurveillanceEnvironments,WACV2009] Ratherthanrelyingonfacerecognitiononly,acomplementarypeoplesearch frameworkbasedonsemanticattributesisprovided QueryExample: “Showmeallbaldpeopleatthe42ndstreetstationlastmonthwithdarkskin,wearing sunglasses,wearingaredjacket” VisualRecognition And Search ColumbiaUniversity, Spring 2013
PeopleSearch in SurveillanceVideos VisualRecognition And Search ColumbiaUniversity, Spring 2013
PeopleSearch in SurveillanceVideos VisualRecognition And Search ColumbiaUniversity, Spring 2013
PeopleSearch in SurveillanceVideos PeopleSearchbased on textual descriptions-It does notrequire trainingimagesforthe targetsuspect. Robustness: attributedetectorsaretrainedusinglots oftraining imagescoveringdifferentlightingconditions,pose variation,etc. Workswellinlow-resolutionimagery(typicalinvideosurveillance scenarios) VisualRecognition And Search ColumbiaUniversity, Spring 2013
PeopleSearch in SurveillanceVideos Modelingattributecorrelations [Siddiquie,FerisandDavis,“ImageRankingandRetrievalBasedon Multi-AttributeQueries”,CVPR2011] VisualRecognition And Search ColumbiaUniversity, Spring 2013
Attribute-Based Classification VisualRecognition And Search ColumbiaUniversity, Spring 2013
Attribute-basedClassification Recognitionof Unseen Classes(Zero-ShotLearning) [Lampertet al,LearningTo DetectUnseenObject ClassesbyBetween-ClassAttribute Transfer, CVPR2009] 1) Train semanticattributeclassifiers 2) Obtainaclassifier for anunseen object(notrainingsamples) byjust specifyingwhichattributesit has VisualRecognition And Search ColumbiaUniversity, Spring 2013
Attribute-basedClassification Unseencategories Flat multi-class classification Unseencategories SemanticAttribute Classifiers Attribute-based classification VisualRecognition And Search ColumbiaUniversity, Spring 2013
Attribute-basedClassification Actionrecognition[Liual, CVPR2011] Faceverification[Kumar etal,ICCV2009] BirdCategorization[Farrell etal,ICCV 2011] Animal Recognition [Lampertetal, CVPR2009] PersonRe-identification [Layneetal,BMVC 2012] Many more!Significant growthin thepast few years VisualRecognition And Search ColumbiaUniversity, Spring 2013
Attribute-basedClassification Note:Severalrecent methodsuse the term“attributes”to refer to non-semantic modeloutputs In this caseattributesare justmid-level features,likePCA, hidden layersin neuralnets, …(non-interpretablesplits) VisualRecognition And Search ColumbiaUniversity, Spring 2013
Attribute-basedClassification http://rogerioferis.com/VisualRecognitionAndSearch/Resources.html VisualRecognition And Search ColumbiaUniversity, Spring 2013
Attributesfor Fine-Grained Categorization VisualRecognition And Search ColumbiaUniversity, Spring 2013
Fine-Grained Categorization VisualRecognition And Search ColumbiaUniversity, Spring 2013
Fine-Grained Categorization VisualRecognition And Search ColumbiaUniversity, Spring 2013
Fine-Grained Categorization VisualRecognition And Search ColumbiaUniversity, Spring 2013
Fine-Grained Categorization Visipedia(http://http://visipedia.org/) Machinescollaboratingwithhumans to organizevisualknowledge,connectingtext to images, imagesto text, andimagesto images Easyannotationinterfaceforexperts(poweredbycomputervision) VisualQuery:Fine-grainedBirdCategorization Picturecredit:Serge Belongie VisualRecognition And Search ColumbiaUniversity, Spring 2013
Fine-Grained Categorization African Isit anAfricanor IndianElephant? Indian Example-basedFine-GrainedCategorizationis Hard!! SlideCredit:ChristophLampert VisualRecognition And Search ColumbiaUniversity, Spring 2013
Fine-Grained Categorization African Isit anAfricanor IndianElephant? Indian SmallerEars LargerEars Visualdistinctionofsubordinatecategoriesmaybequitesubtle,usually basedonParts and Attributes VisualRecognition And Search ColumbiaUniversity, Spring 2013
Fine-Grained Categorization Standard classificationmethods may notbesuitablebecausethe variationbetween classesissmall… [B.Yao,CVPR2012] Codebook …and intra-classvariationisstillhigh. VisualRecognition And Search ColumbiaUniversity, Spring 2013
Fine-Grained Categorization Humans rely onfield guides! Field guides usually refer to partsand attributesofthe object SlideCredit:PietroPerona VisualRecognition And Search ColumbiaUniversity, Spring 2013
Fine-Grained Categorization [Branson etal, VisualRecognitionwithHumansinthe Loop,ECCV2010] VisualRecognition And Search ColumbiaUniversity, Spring 2013
Fine-Grained Categorization [Branson etal, VisualRecognitionwithHumansinthe Loop,ECCV2010] Computervision reduces the amountofhuman-interaction (minimizesthe numberofquestions) VisualRecognition And Search ColumbiaUniversity, Spring 2013
Fine-Grained Categorization [Wahetal, MulticlassRecognitionand PartLocalizationwithHumansin theLoop, ICCV2011] Localizedpartand attributedetectors. Questionsincludeaskingtheusertolocalizeparts. VisualRecognition And Search ColumbiaUniversity, Spring 2013
Fine-Grained Categorization http://www.vision.caltech.edu/visipedia/CUB-200-2011.html VisualRecognition And Search ColumbiaUniversity, Spring 2013
Fine-Grained Categorization VideoDemo: http://www.youtube.com/watch?v=_ReKVqnDXzA VisualRecognition And Search ColumbiaUniversity, Spring 2013
Likea normal fieldguide… that and you can searchandsort with visualrecognition See N.Kumar et al, "Leafsnap:AComputer VisionSystemfor Automatic PlantSpecies Identification,ECCV 2012
Nearly1 million downloads 40knewuserspermonth 100kactive users million imagestaken 100knewimages/month 100kuserswith>5images 1.7 Usersfromallovertheworld Botanists,educators,kids,hobbyists, photographers,… Slide Credit:NeerajKumar
Fine-Grained Categorization Checkthefine-grainedvisual categorizationworkshop: http://www.fgvc.org/ VisualRecognition And Search ColumbiaUniversity, Spring 2013
RelativeAttributes VisualRecognition And Search ColumbiaUniversity, Spring 2013
Relative Attributes [Parikh &Grauman,RelativeAttributes,ICCV 2011] Smiling ??? Not smiling ??? Natural Notnatural Slidecredit:Parikh&Grauman VisualRecognition And Search ColumbiaUniversity, Spring 2013
LearningRelative Attributes Foreach attribute e.g., “openness” Supervision consists of: Orderedpairs Similarpairs Slidecredit:Parikh&Grauman VisualRecognition And Search ColumbiaUniversity, Spring 2013
LearningRelative Attributes Learna rankingfunction Imagefeatures Learnedparameters that best satisfies the constraints: Slidecredit:Parikh&Grauman VisualRecognition And Search ColumbiaUniversity, Spring 2013
LearningRelative Attributes Max-margin learning to rank formulation 2 1 4 3 6 5 Based on[Joachims2002] RankMargin Image RelativeAttributeScore Slidecredit:Parikh&Grauman VisualRecognition And Search ColumbiaUniversity, Spring 2013
Relative Zero-ShotLearning Each image is convertedinto a vector ofrelative attributescores indicating thestrength of eachattribute A Gaussiandistributionforeach categoryis builtintherelative attribute space.Thedistributionof unseen categoriesis estimatedbased onthe specifiedconstraints andthe distributionsof seen categories Max-likelihood is thenusedfor classification Blue:Seen class Green:Unseen class VisualRecognition And Search ColumbiaUniversity, Spring 2013
Relative Image Description Slidecredit:Parikh&Grauman VisualRecognition And Search ColumbiaUniversity, Spring 2013
WhittleSearch Slidecredit:KristenGrauman VisualRecognition And Search ColumbiaUniversity, Spring 2013
http://rogerioferis.com/PartsAndAttributes/ http://pub.ist.ac.at/~chl/PnA2012/ VisualRecognition And Search ColumbiaUniversity, Spring 2013
Summary Semanticattributeclassifierscan beusefulfor: Describingimagesofunknownobjects [Farhadiet al,CVPR2009] Recognizingunseenclasses[Lampertet al,CVPR2009] Reducingdataset bias (trainedacross classes) Effective objectsearch insurveillancevideos[Vaqueroet al,WACV2009] Compactdescriptors/Efficientimage retrieval[Douzeetal, CVPR2011] Fine-grainedobjectcategorization [Wahetal, ICCV 2011] Face verification[Kumar etal, 2009],Actionrecognition[Liuetal, CVPR 2011], Personre-identification[Layneetal, BMVC 2012] andother classificationtasks. Otherapplications,suchassentencegeneration fromimages [Kulkarniet al, CVPR2011], imageaesthetics prediction[Dharet alCVPR2011], … VisualRecognition And Search ColumbiaUniversity, Spring 2013
Summary Extensive annotationmay berequiredfor attributeclassifiers Class-attribute relations may beautomatically extractedfrom textual sources [Rohrbachet al,WhatHelpsWhere–AndWhy?SemanticRelatednessfor KnowledgeTransfer",CVPR2010];[Bergetal, AutomaticAttribute Discovery andCharacterizationfrom Noisy WebData,ECCV2008]. SemanticAttributesmay notbediscriminative Variousmethodscombinesemanticattributeswith“discriminative attributes” (non-semantic)for classification(e.g.,[Farhadietal, CVPR2009]).Construction of nameable+ discriminativeattributeshasalsobeenproposed by[Parikh & Grauman,Interactively Buildinga DiscriminativeVocabularyofNameable Attributes,CVPR2011] VisualRecognition And Search ColumbiaUniversity, Spring 2013