1 / 44

RESISTÊNCIA DOS MATERIAIS UM CURSO LEGAL !!!

RESISTÊNCIA DOS MATERIAIS UM CURSO LEGAL !!!. FACULDADE DE ENGENHARIA MECÂNICA DEPARTAMENTO DO PROJETO MECÂNICO – DPM 2.º SEMESTRE DE 2005 CURSO PARA ALUNOS DE ENGENHARIA DE COMPUTAÇÃO, QUÍMICA, ALIMENTOS, ELÉTRICA. QUEM É O PROFESSOR ?. PROF. EDUARDO COELHO. VAMOS NOS CONHECER MELHOR ?.

yessica
Download Presentation

RESISTÊNCIA DOS MATERIAIS UM CURSO LEGAL !!!

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. RESISTÊNCIA DOS MATERIAISUM CURSO LEGAL !!! • FACULDADE DE ENGENHARIA MECÂNICA • DEPARTAMENTO DO PROJETO MECÂNICO – DPM • 2.º SEMESTRE DE 2005 • CURSO PARA ALUNOS DE ENGENHARIA DE COMPUTAÇÃO, QUÍMICA, ALIMENTOS, ELÉTRICA

  2. QUEM É O PROFESSOR ? PROF. EDUARDO COELHO

  3. VAMOS NOS CONHECER MELHOR ? • PEGUE UMA FOLHA DE PAPEL • ESCREVA SEU NOME NA VERTICAL • PERGUNTE OS NOMES DOS COLEGAS AO SEU LADO • DÊ UM ABRAÇO OU APERTO DE MÃO EM CADA COLEGA QUE CONHECEU • COLOQUE OS NOMES NA HORIZONTAL, APROVEITANDO AS LETRAS DO SEU NOME, ATÉ QUE TODAS AS LETRAS SEJAM USADAS • SERÁ QUE VOCÊ CONSEGUE ?

  4. MATERIAIS MADEIRA CERÂMICA TITÂNIO ESTRUTURAS CONCRETO INOXIDÁVEL AÇO ALUMÍNIO RESISTÊNCIA

  5. MINHAS EXPECTATIVAS COM O CURSOE COM MINHA PROFISSÃO • NO VERSO DO PAPEL, ESCREVA : • 3 IDÉIAS REPRESENTATIVAS SOBRE O QUE ESPERA DO CURSO • 3 IDÉIAS REPRESENTATIVAS SOBRE O QUE ESPERA FAZER EM SUAS ATIVIDADES PROFISSIONAIS

  6. OBJETIVOS DO CURSO • CONHECER AS PROPRIEDADES DOS MATERIAIS CAPAZES DE RESISTIR ESFORÇOS EM DIFERENTES TIPOS DE ESTRUTURAS • VER NO AMBIENTE TELEDUC, MATERIAL DE APOIO, O ITEM PROPRIEDADES DOS MATERIAS, TABELAS DAS TENSÕES DE RESISTÊNCIA CONTRA ESCOAMENTO E RUPTURA • CONHECER OS DIFERENTES TIPOS DE ESTRUTURAS E ANALISAR SEU COMPORTAMENTO E POTENCIALIDADES PARA USO EM EDIFICAÇÕES E EQUIPAMENTOS • ESTUDAR OS ESFORÇOS SOBRE AS PARTES E A TOTALIDADE DA ESTRUTURA, ANALISANDO SEUS EFEITOS • DIMENSIONAR (DEFINIR AS DIMENSÕES) AS BARRAS E A ESTRUTURA COMO UM TODO, PARA QUE RESISTAM ÀS SOLICITAÇÕES COM SEGURANÇA E ECONOMIA

  7. METODOLGIA DE CÁLCULO • DEFINIÇÃO DA GEOMETRIA DA ESTRUTURA E DAS CARGAS EXTERNAS • ESCOLHA DO MATERIAL (PROJETO ARQUITETÔNICO OU DECISÃO DO CALCULISTA); • CÁLCULO DOS ESFORÇOS INTERNOS, NAS SEÇÕES MAIS SOLICITADAS (PARA COMPOSIÇÃO MAIS DESFAVORÁVEL DAS CARGASDAS CARGAS); • CÁLCULO DAS TENSÕES, DESLOCAMENTOS E DEFORMAÇÕES (SOFTWARES APLICATIVOS); • COMPARAÇÃO COM OS LIMITES ACEITÁVEIS; • DEFINIÇÃO FINAL DA GEOMETRIA DA ESTRUTURA COMO UM TODO; • ORÇAMENTAÇÃO, DESENHOS DE EXECUÇÃO.

  8. PLANEJAMENTO DA DISCIPLINACONTEÚDO PROGRAMÁTICO • OS MATERIAIS E AS ESTRUTURAS - PROPRIEDADES, ANÁLISE E COMPORTAMENTO • ESFORÇOS SOLICITANTES • PEÇAS AXIALMENTE COMPRIMIDAS • PEÇAS SOB TORÇÃO • PEÇAS SOB FLEXÃO • TENSÕES, DESLOCAMENTOS E DEFORMAÇÕES • DIMENSIONAMENTO E VERIFICAÇÃO DE ELEMENTOS ESTRUTURAIS • VEJA NO TELEDUC – MATERIAL DE APOIO, ITEM PLANEJAMENTO DA DISCIPLINA, COM MAIORES DETALHES

  9. PLANEJAMENTO DA DISCIPLINABIBLIOGRAFIA • BIBLIOGRAFIA BÁSICA E COMPLEMENTAR • TODOS OS LIVROS CONSTAM DAS BIBLIOTECAS DA UNICAMP • VEJA MAIS NO TELEDUC – MATERIAL DE APOIO, ITEM BIBLIOGRAFIA • MAIOR USO: Nash, William. Resistência dos Materiais. Editora Mc Graw Hill e Gere, James. Resistência dos Materiais. Thomson Editora.

  10. PLANEJAMENTO DA DISCIPLINAAVALIAÇÃO • PROVAS ESCRITAS : 2 • TRABALHOS PRÁTICOS EM SALA DE AULA • INTERAÇÕES NO TELEDUC (ALUNOS – ALUNOS E ALUNOS – DOCENTE) • PESQUISAS

  11. METODOLOGIA DE ENSINOMETAS DE APRENDIZAGEM • MÓDULOS PRESENCIAIS: • 3 HORAS AULAS SEMANAIS, 2.ª FEIRA, 14:00 ÀS 17:00 HS; • EXPOSIÇÃO DOS CONTEÚDOS; • TIRA-DÚVIDAS; • EXERCÍCIOS E TRABALHOS PRÁTICOS; • PESQUISAS DE TEMAS; • APRESENTAÇÕES PELOS ALUNOS; • META: DESENVOLVER OS CONTEÚDOS, FAVORECER A APRENDIZAGEM

  12. METODOLOGIA DE ENSINOMETAS DE APRENDIZAGEM • MÓDULOS A DISTÂNCIA – AMBIENTE TELEDUC: • USO CONTÍNUO E COMPLEMENTAR DO AMBIENTE TELEDUC; • LOGIN E SENHA PARA CADA ALUNO; • MATERIAL DE APOIO, INTERAÇÕES, TIRA-DÚVIDAS, AVALIAÇÕES, PERFIL DO ALUNO, PARADA OBRIGATÓRIA, DINÂMICA DO CURSO, AGENDA • META : BUSCAR INFORMAÇÕES, PROPICIAR INTERAÇÃO/COMPARTILHAMENTO

  13. O AMBIENTE TELEDUCSOFTWARE LIVRE DA UNICAMP   Estrutura do Ambiente    Agenda    Dinâmica do Curso    Atividades    Avaliações    Parada Obrigatória    Material de Apoio    Bate-Papo    Mural    Fóruns de Discussão    Grupos    Correio    Portfólio    Perfil    Acessos           Intermap           Sair    Configurar MODERNIZAÇÃO, QUALIFICAÇÃO DO ENSINO, INTERAÇÃO

  14. OS MATERIAIS E SUAS PROPRIEDADES • AÇO COMUM, AÇO DE ALTA RESISTÊNCIA, AÇO INOXIDÁVEL • CONCRETO ARMADO • ALUMÍNIO • MADEIRAS • CERÂMICAS

  15. ESTRUTURAS DE CONCRETO ARMADO

  16. ESTRUTURAS DE AÇO

  17. ESTRUTURAS DE AÇO

  18. ESTRUTURAS DE MADEIRA

  19. ALUMÍNIOESTRUTURAS E PEÇAS

  20. RESISTÊNCIA DOS MATERIAIS • DISCIPLINA BÁSICA DAS ENGENHARIAS; • APLICAÇÃO EM PROJETOS, OBRAS, EQUIPAMENTOS, SOFTWARES; • INTEGRAÇÃO TEORIA E PRÁTICA; • RACIOCÍNIO, SIMULAÇÃO, DEDUÇÃO, EXERCÍCIO, ANÁLISE; • ESTABILIDADE ESTRUTURAL.

  21. NORMAS REGULATÓRIAS PARA USO DE MATERIAIS E DIMENSIONAMENTO • UTILIZADAS POR PROFISSIONAIS E EMPRESAS PARA PROJETAR, CALCULAR, EXECUTAR SERVIÇOS, EQUIPAMENTOS, OBRAS; • VARIAM DE PAÍS PARA PAÍS; • APLICAM-SE A CADA TIPO DE MATERIAL: NB-1: CONCRETO ARMADO, NB-11: MADEIRAS, NB-14: AÇO, NB 6.120: CARGAS, NB-6.123: VENTO; • ASTM (American Society for Testing of Materials) • ISO

  22. CONDIÇÕES DE SEGURANÇA • UMA ESTRUTURA COMO UM TODO OU SUAS PARTES PRECISAM: • EVITAR ATINGIR TENSÕES DE RUPTURA OU ESCOAMENTO; • DEFORMAR-SE ABAIXO DE LIMITES NORMATIVOS (ACUIDADE VISUAL, CONFORTO DOS USUÁRIOS); • TER CUSTO ECONÔMICO (RACIONALIDADE DE PROJETO E EXECUÇÃO); • TER BOM ASPECTO ESTÉTICO.

  23. COEFICIENTES DE SEGURANÇA(TAXA DE AMOR AO DIPLOMA) • AMPLIAM AS CARGAS NORMATIVAS, IMAGINANDO QUE PODEM SER NA REALIDADE MAIORES QUE AS PREVISTAS (EX: VENTO, SISMOS, NEVE, ETC); • REDUZEM AS CAPACIDADES DOS MATERIAIS, IMAGINANDO NÃO CUMPRIREM ESPECIFICAÇÕES DE CATÁLOGOS;

  24. ZONAS DE RUPTURA E SEGURANÇA TENSÕES RUPTURA ESCOAMENTO área de segurança zona elástica DEFORMAÇÕES DIAGRAMA TENSÃO X DEFORMAÇÃO NO AÇO COMUM

  25. DIMENSIONAR A ESTRUTURA E SEUS ELEMENTOS ( antes da execução) • ESCOLHER OS MATERIAIS; • CONHECIDAS AS CARGAS, CALCULAR AS DIMENSÕES DOS ELEMENTOS E DA ESTRUTURA PARA QUE OBEDEÇAM LIMITES DE TENSÃO E DESLOCAMENTOS, COM SEGURANÇA E ECONOMIA; P= 5 tf p = 1 tf/m viga 6,0 m 2,0 m (qual a dimensão do perfil metálico a ser usado?)

  26. VERIFICAÇÃO DAS ESTRUTURAS(após a execução) • VERIFICAR SE OS MATERIAIS USADOS E SUAS DIMENSÕES SÃO COMPATÍVEIS COM OS LIMITES NORMATIVOS OU AS CARGAS APLICADAS • TESTES (EXTENSÔMETROS PARA ANALISAR DEFORMAÇÕES, ULTRA-SOM) seção transversal da viga 30 cm 8 cm p = ? 50 cm 2,0 m 6,0 m 6 cm

  27. CARGAS EXTERNAS • PERMANENTES • DIREÇÃO, INTENSIDADE, SENTIDO, PONTO DE APLICAÇÃO CONSTANTES AO LONGO DA VIDA ÚTIL DA ESTRUTURA (EX: PESO PRÓPRIO) • ACIDENTAIS OU VARIÁVEIS • VARIAM AO LONGO DA VIDA ÚTIL (EX: VENTOS, PÚBLICO, TEMPERATURA ETC)

  28. CARGAS F momento fletor • CARGAS CONCENTRADAS Atuam em um ponto ou em área pequena, comparada com as dimensões da barra • CARGAS DISTRIBUÍDAS vento empuxo de água linearmente distribuídas uniformemente distribuídas

  29. CLASSIFICAÇÃO DAS ESTRUTURASVÍNCULOS EXTERNOS E INTERNOS • APOIO FIXO (transmite esforços horizontais e verticais; não transmite momento fletor) • APOIO MÓVEL (transmite esforço na direção perpendicular ao movimento) • ENGASTE (transmite esforços e momento fletor) H V H = 0 V M H V

  30. CLASSIFICAÇÃO DAS ESTRUTURAS b = n.º de barras (transmitem só esforços na direção de seu eixo longitudinal) F F n = n.º de nós ( pontos de encontro de barras ) nó c = n.º de chapas (transmitem esforços na horizontal, vertical e momentos)

  31. CLASSIFICAÇÃO DAS ESTRUTURAS(quanto à geometria) • HIPOSTÁTICAS (b<3c+2n) - Exemplos chapa b=2 c=1 2 < 3.1 + 2.0 (1 grau de mobilidade) (movimento) (1) (1) 111 São estruturas com algum grau de mobilidade

  32. CLASSIFICAÇÃO DAS ESTRUTURAS(quanto à geometria) Estruturas Isostáticas (b=3c+2n) – geometricamente determinadas b=2 n=1 c=1, b=3, n=0 c=1, b=3, n=0 viga barra (2) (1) poste nó (3) treliça plana Treliça plana (2) pórtico plano b=20, n=10, c=0 (2) (1) c=1, n=0 b=6 c=1, n=0 b=3 (2) (2) (2) (1)

  33. ESTRUTURAS ISOSTÁTICAS treliça em balanço articulação entre 2 chapas (2) (2) chapa chapa b=16, n=8,c=0 (1) (2) (2) arco b=6, c-2, n=0 chapa H H V V (2) (1) b=3, c=1, n=0

  34. ESTRUTURAS HIPERESTÁTICAS( b>3c + 2n) b=6, c=1, n=0 3 x hiper b=4, c=1, n=0 (3) (3) (2) (2) (2( engaste (1 vez hiperestática) b=4, c=1, n=0 1 vez hiper (2) (2) (2) (2) b= 23, n=10, c=0 3 x hiper arco bi-engastado b=6, c=1, n=0 3 vezes hiper (3) (3) engaste

  35. CLASSIFICAÇÃO DAS ESTRUTURAS(QUANTO AO N.º DE ESFORÇOS) • No plano, a estrutura fica equilibrada se: • Soma de forças em x = 0 • soma de forças em y = 0 • soma de momentos em relação a qualquer ponto = 0 • Na estrutura hipostática, o número de incógnitas, (reações de apoio) é menor que o n.º de equações de equilíbrio equações de equilíbrio M A B movimento (3 equações, 2 incógnitas) V V A B

  36. ESTRUTURA ISOSTÁTICA N.º de equações de equilíbrio = n.º de reações de apoio + forças nos vínculos internos y C A N N ab bc α α B x P P (carga externa) Soma de forças em x = 0 .......................................... N = N Soma de forças em y = 0 .......................................... N = P / 2 x cos ab bc α ab

  37. EXEMPLO 1 y 1 tf 1 tf 1 tf 0,5 tf 1.0 m 0,5 tf H A 1.0 m A B x 1,50 m 1,50 m 1,50 m 1,50 m V V B A ∑ F em x = 0 ..... H = 1,0 tf ∑ F em y = 0 ...... V + V = 3 tf A B ∑ M em A = 0 ..... 1.1,5 + 1.3,0 + 1.4,5 – 0,5.2,0 – 0,5.1,0 – V .6,0 =0 V= 1,25 tf V = 1,75 tf B A B

  38. EXEMPLO 2 y R = p . L p M A H A A x engaste F V A ( L ) ( L / 2 ) ∑ F em x = 0 .... H = 0 A ∑ F em y = 0 ....V = p . L + F ∑ M = 0 .... M = p . L . L / 2 + F . L = p . L ² / 2 + F . L A A

  39. ESTRUTURAS HIPERESTÁTICAS( N.º DE EQUAÇÕES DE EQUILÍBRIO < N.º DE INCÓGNITAS) C N E N BC DE (Barrra rígida) H A A B B D D A F F 2 m 3 m 2 m 3 m V A V + N + N = F H = 0 A BC DE A ∑M = 0 .... N . 2,0 + N . 5,0 - F . 5,0 = 0 A BC DE Compatibilidade de deslocamentos (EQUAÇÃO COMPLEMENTAR) A B D Δ Δ Δ Δ B = D (barra deslocada) D B 2,0 5,0 Δ B = DESLOCAMENTO DA BARRA BC ( propor. a N ) 2 m 3 m BC Δ D = DESLOCAMENTO DA BARRA DE ( propor. a N ) DE

  40. EXEMPLO 3 Y F = 4 tf + p = 1 tf/m X H A 60 º V V B A 2 m 3 m 5 m 2 m ∑ F em x = 0 ... H = 4 . cos 60º = 2,0 tf A V = 9,2 tf A ∑ F em y = 0 .... V + V = 1 . 12 + 4 . sen 60º A B V = 6,3 tf ∑ M = 0 ...... 1 . 12 . 4,0 + 4 . sen 60º . 3,0 – V . 8,0 = 0 B A B

  41. EXEMPLO 4 Y 1 tf + 1 tf 1 tf H A B A X 0,5 m 0,5 tf 1 tf 1 tf V V 1 tf 1 tf B A 0,5 m 1,0 m 1,0 m 1,0 m 0,5 m ∑ F em x = 0 ... H = 0,5 tf A ∑ F em y = 0 .... V + V = 7 tf A B ∑ M = 0 ...... V . 4,0 – 0,5 . 0,5 – 1 (3,5 + 3,0 + 2,5 + 2,0 + 1,5 + 1,0 + 0,5) = 0 B A V = 3,56 tf e V = 2,44 tf A B

  42. EXEMPLO 5 y 2 tf / m + ∑ F em x = 0 ... 0,5 . 4 – H = 0 H = 2,0 tf 0,5 tf / m 0,8 tf A 4 m A M A x H A V A 1 m 4 m ∑ F em y = 0 .... V - 2 . 5,0 – 0,8 = 0 V = 10,8 tf A A ∑ M = 0 ...... 2 . 5,0 . 1,5 + 0,5 . 4,0 . 2,0 + 0,8 . 4,0 – M = 0 M = 22,2 tf . m A A

  43. EXEMPLO 6 1 tf / m Chapa 2 1 tf 0,5 tf / m β 1,5 m cos β = 4/5 = 0,8 Chapa 1 β 1,5 m sen β = 3/5 = 0,6 H H A C V V C A 4 m 2 m 2 m Sem abrir a estrutura : V - 1 . 4 - 1 . 0,8 + V = 0 ...... V + V = 4,8 tf 0,5 . 3 - H - 1. 0,6 - H = 0 .... H + H = 0,9 t 0,5 . 3 . 1,5 + 1 . 4. 2 + 1 . 0,8 . 6 - 1 . 0,6 . 1,5 - V . 8 = 0 ..... V = 1,77 tf V = 3,03 tf A C A C A C A C C C A

  44. Separando a estrutura na articulação B 1 tf / m Chapa 2 H Chapa 2 ........... 0,75 - 1 . 0,6 - H = 0 .... H = 0,75 tf 3,03 – 1 . 4 – 1 . 0,8 + V = 0 V = 1,77 tf ( bate!! ) B 1 tf B 1,5 m C C V β 1,5 m B H C C V C C 4 m 2 m 2 m V B H Chapa 1 B Chapa 1 ... V = V = 3,03 tf H = H = 0,5 . 3 / 2 = 0,75 tf (simetria) H 0,5 tf / m B A B H A A A B V A

More Related