60 likes | 166 Views
How Tall Is It?. an Alec Hudson, Gabi Vargas, Alexis Smith, and Kay Yoshida Production. 5 th Period 2-25-11. Alec Hudson. 12. Cos 30= _________ . x. 12. X= ________ = 24. Cos 30. Sin x= _________ = 60. 12. 13.86. 60º . Sin 30= _______ . x. 12. 18 Ft. 24 Ft.
E N D
How Tall Is It? an Alec Hudson, Gabi Vargas, Alexis Smith, and Kay Yoshida Production 5th Period 2-25-11
Alec Hudson 12 Cos 30= _________ x 12 X= ________ = 24 Cos 30 Sin x= _________ = 60 12 13.86 60º Sin 30= _______ x 12 18 Ft 24 Ft X= Sin 30* 12= 18 90º In a 30, 60, 90 triangle… 30º Sh. Leg= 12 L Leg= 12 √3 Hyp= 24 12 FT 5 Ft The wall’s height is =18+5 =23 ft.
Gabriela Vargas Trigonometry Tan 45 =Opp Leg 18 Opp leg=18 Cos 45= 18 Hypo Hypo = 25.46 45° Special Right Triangles 45-45-90 25.46 Ft 18 Ft Hypo =√2 leg Hypo = √2 18 Hypo= 18√2 Leg = leg 18 = 18 90° 45° 4’9 Ft 18 Ft The wall’s height = Long leg + my height 18 + 4.08 =22.08 ft.
Alexis smith • Tan 50 = x • 20 • X= 23.84 • Sin 40 = 20 • x • X= 31.11 • The wall’s height: • 23.84 + 5’1’’ = 28.92 ft. 40° 31.11 ft. 23.84 ft. 50 ° ° 90° 20 ft. 5’1” ft.
Trigonometry Kay yoshida Tan30=X/47 X≈27.14 Cos30=47/X X≈54.27 Special Right Triangle 54.27ft. Since it’s a 30, 60, 90 triangle… 60° Short leg= 47√(3) 27.17ft. 3 30° Long leg=47ft 4’8” ft. Hyp=SL*2= 9√(3) 47ft. 3 The wall’s height… =27.14ft.+4’8” =27.14+4 8/12 =27.14+4.67 ≈ 31.81
Conclusion • We learned that you can find the height of an object by either using trigonometry and/or special right triangles. • As the angle measurement got bigger, the more space between the person and the wall. • As the angle measurement got smaller, the less space between the person and the wall. • The bigger the angle, the bigger the triangle. • Average height≈26.45