1 / 40

Az MHC polimorfizmusa (Major histocompatibility complex)

Az MHC polimorfizmusa (Major histocompatibility complex). Polimorf gén--- több változat (allél) előfordulása az adott génszakaszon (lokuszon) Az MHC a legpolimorfabb fehérjénk, a legtöbb féle változatban jelenik meg a populációban.

agatha
Download Presentation

Az MHC polimorfizmusa (Major histocompatibility complex)

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Az MHC polimorfizmusa (Major histocompatibility complex) Polimorf gén--- több változat (allél) előfordulása az adott génszakaszon (lokuszon) Az MHC a legpolimorfabb fehérjénk, a legtöbb féle változatban jelenik meg a populációban

  2. Gén: fehérjék szabályozásához és előállításához szükséges információkat tartalmazó DNS szakasz (ez egy tág definíció) Lókusz: a gén helye a kromszómán Allél: Az adott lókuszon elhelyezkedő gén variáns (az egyedben) Allotípus (immunológiában): Az egyedben kifejeződő allél(ok) típusa

  3. A három legfontosabb MHCI, illetve MHCII gén HUMAN LEUKOCYTE ANTIGEN

  4. 1 1 2 2 Az MHCII molekulák csak a hivatásos antigénperzentáló sejteken fejeződnek ki. Dendritikus sejt Makrofág B-sejt Az expresszió mértéke változó, szabályozott, az immunválasz vagy egyes fertőzések befolyásolhatják a sejtfelszínen megjelenő molekulák számát. ! !

  5. ! ! 2 1 2m 3 Az MHCImolekulák az összes magvas sejten kifejeződnek. Az expresszió mértéke változó, szabályozott, az immunválasz vagy egyes fertőzések befolyásolhatják a sejtfelszínen megjelenő molekulák számát. PEPTID

  6. AZ EMBERI MHC (HLA) POLIMORFIZMUSA AZ EMBERI POPULÁCIÓBAN Pl. a HLA-A lokuszon 218 változat fejeződhet ki 439 218 II osztály 492 allél 269 96 89 42 b a b a b a 19 20 A B C 2 DR DP DQ I osztály A polimorfizmus (allélek) száma

  7. MHCI ! Három I-es típusú polimorf génről (HLA-A,HLA-B,HLA-C) íródnak át fehérjék. 077-298-32 HLA-C HLA-B HLA-A MHCI- A sejtjeink személyi száma?!

  8. MHCI és az MHCII is kodominánsan öröklődik, mind az anyai mind az apai allél aktív 077-298-32------------------218-329-10 HLA-C HLA-A HLA-B HLA-B HLA-A HLA-C anyai apai

  9. Minden egyed, minden magvas sejtje 6 féle MHCI molekulát fejez ki a sejtfelszínen ! HLA-C HLA-A HLA-B HLA-B HLA-A HLA-C anyai apai ~6 x 1015lehetséges egyedi kombináció 10milliárd 1010

  10. AZ MHC MOLEKULÁK POLIMORFIZMUSA AZ EMBERI POPULÁCIÓBAN FELTÉTELEZÉS • Az összes MHC allotípus elvileg véletlenszerűen oszlik el a populációban • Az1200 különböző allél bármely másik alléllal együttesen fordulhat elő ~6 x 1015 egyedi kombináció Csak az egypetéjű ikrek HLA lókuszai megegyezőek Az emberi populáció nagyon kevert (outbred) Az MHC genetika nagyon összetett POLIGENITÁS, POLIMORFIZMUS

  11. Frekvencia (%) Allél csoportok CAU ASI AFR HLA-A1 HLA- A2 HLA- A3 HLA- A28 HLA- A36 15.18 28.65 13.38 4.46 0.02 5.72 18.88 8.44 9.92 1.88 4.48 24.63 2.64 1.76 0.01 A valóságban az MHC allélek NEMvéletlenszerűen oszlanak el a populációban Az allélek a fajták és a vonalak között haplotípusokban szegregálódnak

  12. AZ I TÍPUSÚ MHC MOLEKULA TÉRSZERKEZETE 2 1 2m 3 ! Egy polimorfαlánc (immungolbulin domének) és egy nem polimorfβ2 mikroglobulin MINDEN MAGVAS SEJTEN KIFEJEZŐDIK

  13. 1 1 2 2 AZ II TÍPUSÚ MHC MOLEKULA TÉRSZERKEZETE ! Egy polimorf αlánc és egy szintén polimorfβ lánc. (immungolbulin domének) A HIVATÁSOS ANTIGÉN PREZENTÁLÓ SEJTEKEN (DC, makrofág, B-sejt ) JELENIK MEG

  14. Az MHCII öröklődése szintén kodomináns. (Mivel egy allélon (pl. DP) mindkét lánc polimorf, a kifejeződő fehérjén az anyai α lánc az apai β lánccal is párba állhat, ez a variációk számát tovább növeli. Kb 16-20 különféle MHCII molekula jelenik meg az egyes sejtek felszínén.) transz transz a b a b 1 1 2 2 cisz transz cisz DP DQ

  15. Az MHC molekulák peptid kötése

  16. Proteaszóma fehérje ubiqutin oligopeptidek A sejt összes fehérjéje lebomolhat/lebomlik a proteaszómák által Az MHC molekulák a keletkező rövid peptideket kötik meg Az MHC felszínére a sejten belül kapcsolódnak a peptidek

  17. AZ I TÍPUSÚ MHC MOLEKULA TÉRSZERKEZETE 2 1 2m 3 ! Egy polimorfαlánc (immungolbulin domének) és egy nem polimorfβ2 mikroglobulin PEPTID PEPTID Stabilizálja a konformációt A peptid kötésért az α1 és α2 domének együttesen felelősek MINDEN MAGVAS SEJTEN KIFEJEZŐDIK

  18. AZ I TÍPUSÚ MHC MOLEKULA PEPTID KÖTŐ HELYE Az alfa lánc 1-es és 2-es doménje együtt alakítja ki a peptid kötő zsebet

  19. 1 1 2 2 AZ II TÍPUSÚ MHC MOLEKULA TÉRSZERKEZETE ! Egy polimforαlánc és egy szintén polimorfβ lánc. (immungolbulin domének) PEPTID PEPTIDE A peptid kötésért az α1 és β1 domének együttesen felelősek A HIVATÁSOS ANTIGÉN PREZENTÁLÓ SEJTEKEN (DC, makrofág, B-sejt ) JELENIK MEG

  20. AZ II TÍPUSÚ MHC MOLEKULA PEPTID KÖTŐ HELYE Az alfa illetve a béta lánc 1-es doménja együtt alakítja ki a peptd kötő zsebet PEPTID

  21. a-lánc a-lánc Peptid b-lánc Peptid b2m A PEPTIDKÖTŐ HELY GEOMETRIÁJA Az MHC-IImolekula >13 aminosav hosszúságú peptideket köt Az MHC-I molekula 8-10 aminosav hosszúságú peptideket köt

  22. ! A sejtfelszínen nem (alig) található üres, peptid nélküli MHC I • A peptidkötést követően az MHC a sejt felszínére vándorol, ha a peptidkötés sikertelen, az MHC nem juthat ki a felszínre.

  23. ! A bekötődött peptid fixálta a konformációt, azaz nem cserélődik le A sejten belül az MHC-re kötődőtt peptid megjelenik a sejtfelszínen

  24. A PEPTIDKÖTŐ HELY SZERKEZETE A „törzs” régió aminosav oldalláncai egyenletesen elosztott zsebekbe illeszkednek P2 és P9 nagy hidrofób zsebbe illeszkednek

  25. Egy MHC molekulákról leoldott peptidek eltérő szekvenciákkal rendelkeznek de közös motívumokat tartalmaznak N C T Y Q R T R L V I S Y F P E I H L K Y Q A V T T I S Y I P S A K Egy adott MHC I molekulához kötődő peptidek néhány pozicióban állandó aminosav mintázatot mutatnak,de egy MHC sok különböző peptid megkötésére képes ! A közös szekvencia részlet a MOTIF (motívum) A sok peptidre jellemző közös aminosavak illeszkednek az MHCmolekula szerkezetéhez HORGONYZÓ AMINOSAVAK Nem azonosak de hasonlók Y & F aromás V, L & I hidrofób A horgonyzó aminosavak oldalláncai a zsebekbe illeszkednek

  26. N C T Y Q R T R L V I S Y F P E I H L K Y Q A V T T I S Y I P S A K R G Y V Y Q Q L S I I N F E K L A P G N Y P A L Egy adott MHC I molekulához kötődő peptidek néhány aminosav pozicióban állandó mintázatot mutatnak,de Az eltérő MHC molekulák különböző (horgonyzó aminosavakat) peptideket képesek megkötni ! Az eltérő (polimorf) MHC molekulák különboző horgonyzó aminosavakat igényelnek)

  27. ! Egy MHC molekula egy peptidet köt, de a sejtfelszínen levő azonos MHC molekulák egyidőben is többféle peptidet kötnek. Az MHC a sejten belüli peptidek közül nem mindet, de számosat képes megkötni A bemutatásra kerülő peptidek aránya a molekulák sejten belüli koncentrációjától, és az MHC/peptid kapcsolat affinitástól függ. peptid fehérje Pl. vírus fertőzés/szaporodás Az adott MHC által nem bemuatatott fehérje

  28. Laza, rugalmas Zárt Flexibilis kötőhely? A kötőhely kialakulásának kezdeti, intracelluláris szakaszában a peptid irányítja az MHC molekula térszerkezetét Egy adott MHC molekula számára lehetővé teszi, hogy • sok különböző peptiddel lépjen kapcsolatba • a peptidet a sejtfelszínen nagy affinitással kösse • stabil komplexeket képezzen a sejtfelszínen • csak olyan molekulákat szállítson a sejtfelszínre, amelyek intracellulárisan peptidet kötöttek

  29. MHC molekulák • Amíg a peptid kötés nem történik meg, flexibilis konformációt vesznek fel • A peptidkötést konformáció változás kíséri, aminöveli a komplex stabilitását • A peptid „befogására” kevés horgonyzó aminosav szolgál - a horgonyzó aminosavak közt különböző szekvenciák lehetnek - különböző hosszúságú peptidek kötődhetnek

  30. A T-SEJTEK MHC MOLEKULÁKAT HORDOZÓ ANTIGÉN PREZENTÁLÓ SEJTEK JELENLÉTÉBEN A SEJTFELSZÍNEN MEGJELENŐ ANTIGÉN EREDETŰ PEPTID – MHC KOMPLEXEKET ISMERNEK FEL AZ ! ! Nincs T-sejt válasz T-sejt válasz T Y Sejtfelszíni MHC-peptidkomplex oldott Ag Peptid antigének Sejtfelszíni natív Ag Sejt felszíni peptidek APC

  31. ! Egyféle MHC sok különböző peptid megkötésére képes Nem különbözteti meg a saját illetve idegen peptideket (mindent egyaránt prezentál-bemutat ) A sejtfelszínen egy típusú MHC egy időben sok féle petidet prezentál. Vsz csak néhány MHC mutatja be az immunválaszt kiváltó peptidet T-sejtek jelenléte nem szükséges a peptidkötéshez

  32. Az allélikus polimorfizmus és a peptid kötés következményei:

  33. Az allélikus polimorfizmus a peptid kötő helyre koncentrálódik Class I Class II (HLA-DR) 1 1 2 1 2m 2 2 3 • Az MHC polimorfizmus befolyásolja • a peptid kötő képességet • A TCR általi felismerést • Az allelikus vairánsok 20 aminosavban is eltérhetnek

  34. AZ MHC MOLEKULÁK SAJÁT VAGY ANTIGÉN EREDETŰ PEPTIDEKET KÖTVE JELENNEK MEG A SEJTFELSZÍNEN Vese epitél sejt Bemutatják a sejt belső környezetét I. típusú MHC A citoszólból és a sejtmagból származó adott méretű peptidek

  35. De egy típusú MHC sok féle peptidet köt egy időben, 6-szor sokféle petid prezentálódik. (kb 100000MHCI jelenhet meg a sejtfelszínen. Stimulus függő) Az immunválaszt kiváltó peptid a bemutatott peptidek kis százaléka csupán.

  36. Mi az előnye az MHC típusok sokféleségének? • A patogén mikroorganizmusok osztódása lényegesen gyorsabb, mint az emberi reprodukció • Adott idő alatt a patogéngének sokkal gyakrabban mutálódnak, mint az emberi gének és ezáltal gyakran kikerülhetik az MHC gének változásait • Az egy sejten kifejeződő MHC típusok száma korlátozott • • A populációbannagy számú MHC allél-kombináció van jelen, sok variáns • A variánsok eltérő peptideket képesek bemutatni, azaz eltérő kórokozók ellen jelentenek hatásos védelmet • • Ezek a variánsok nem feltétlenül nyújtanak védelmet az egyes egyed számára, de védik a populációt a kihalástól !

  37. A FERTŐZÉSEK KIMENETELE EGY ÉS TÖBB POLIMORF MHC GÉN ESETÉN Többféle MHC-Gén MHC XX v v v v A patogén kikerüli az MHC X általi felismerést v v v v v v v v v v v v v v v v A populáció védett v v v v Példa: Ha csak egyféle MHC molekula (MHC X) lenne a populációban v A populációt a kihalás fenyegetné V – vírus fertőzés által okozott kár

  38. Példák a polimorfizmus következményeire: HIV HLA-B14-es allotípus megléte lassú betegség fejlődés HLA-A29 gyors Lisztérzékenység: A betegek több, mint 95%-ánál megtalálható a HLA DQ2 és a DQ8 kombinációja.

  39. A VÍRUSSAL FERTŐZÖTT SEJTEK FELISMERÉSE TERMÉSZETES ÖLŐ SEJTEK ÁLTAL Target MHC+ Target MHC- KIR KIR KAR KAR NK NK KIR – Killer Inhibitory Receptor MHC I kötődés KAR – Killer Activatory Receptor ! Sejt • Az NK sejteket alap aktivitását citokinek, aktiváló receptorok fokozzák • A saját sejteken megjelenő gátló receptorok megakadályozzák a saját sejt lízisét Lízis gátlása Sejt lízise Az NK sejtek működését a célsejten jelenlévő MHC molekulák gátolhatják. (saját jelzése)

  40. Nem polimorf MHC allélek: MHC E, F,G Az MHC G Magzat—anyai+apai!! MHC Ezért a placenta nem fejez ki MHC I-et.--- NK aktiváció A HLA G a trophoblast felszínén található, nem köt peptidet. Szerepe a magzat védelme az anya immunrendszerével szemben. MHC-E más MHC fehérjék N terminális peptidjeit prezentálják – MHC fehérjék szintézisének gátlása esetén elfogynak a sejt felszínéről, jelezve, hogy a sejt működése megváltozott---nem gátolja az NK sejtek működését

More Related