1 / 1

Entropia konformacyjna polimeru w materiałach kompozytowych A. Mańka, W. Nowicki

K. E. R. C. Rys. 3. Niezależne zablokowanie dla ruchu K – lokalny efekt objętości wyłączonej. 2. 2. (. ). -. =. +. -. K. 1. P. T. T. E. 2. 2. w. w. Rys. 1. (. ). 3. w. -. w. -. -. 2. 2. 1. 4. (. ). 1. =. K. P. æ. ö. 1. (. ). (. ). (. (. ). (. ).

Download Presentation

Entropia konformacyjna polimeru w materiałach kompozytowych A. Mańka, W. Nowicki

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. K E R C Rys. 3. Niezależne zablokowanie dla ruchu K – lokalny efekt objętości wyłączonej. 2 2 ( ) - = + - K 1 P T T E 2 2 w w Rys. 1. ( ) 3 w - w - - 2 2 1 4 ( ) 1 = K P æ ö 1 ( ) ( ) ( ( ) ( ) ) 4 S 0 w - 3 w - 1 2 1 w = w - w - + 1-szy człon –węzły nie blokują ruchu K ç ÷ 1 2 P 2 eff E 2-gi człon –wzajemne położenie w è ø 1.3.Entropia konformacyjna jako funkcja prawdopodobieństwa wykonania mikro-przesunięcia Ostatecznie entropię konformacyjną łańcucha swobodnego można przedstawić jako funkcję Neff i eff: S ( ) = w N ln eff eff k B więc: æ ö 1 ( ) ç ÷ æ ö K P S 1 ( ) ( ) ( ) 4 = w - w - + K ç ÷ N S ln 1 2 P 2 ç ÷ ( ) E w K k P è ø ç ÷ B S 0 è ø ( ) K L P = - = N N N S ( ) eff K b P S 0 Entropia konformacyjna polimeru w materiałach kompozytowych A. Mańka, W. Nowicki  Wydział Chemii, Uniwersytet im. A Mickiewicza, ul. Grunwaldzka 6, 60-780 Poznań, gwnow@amu.edu.pl 1.STRESZCZENIE W pracy przedstawiono nową metodę obliczania entropii konformacyjnej łańcucha modelowanego na sieci o dowolnym wymiarze i liczbie koordynacyjnej – kombinatoryczną metodę MC (cMC). Opracowana metoda polega na wyznaczaniu prawdopodobieństw mikromodyfikacji łańcucha uzyskiwanych przy użyciu metody Metropolis-MC. Prawdopodobieństwo – docelowy węzeł sieci dostępny dla ruchu K jest zajęty – jest określone przez sumę dwóch niezależnych zdarzeń (rys. 3): Docelowy węzeł dla przesunięcia K znajduje się w sąsiedztwie dwóch segmentów jednocześnie, prawdopodobieństwo, że jest on zajęty jest dane wyrażeniem: 2. METODA cMC 1.1.Efekt struktury łańcucha Jako mikromodyfikację sondującą lokalną entropię konformacyjną łańcucha wybrano przesunięcie K aktualnie wylosowanego segmentu i. Przesunięcie to jest możliwe jedynie w przypadku przedstawionym na rys. 1. Prawdopodobieństwo, że przesunięcie K może być wykonane ze względów strukturalnych dla kłębka niezakłóconego wynosi PS(K)0 i jest w przybliżeniu równe: Prawdopodobieństwo zdarzenia, że docelowy węzeł sieci będzie zajęty przez lokalny efekt objętości wyłączonej (rys. 3) – wynosi 2*1/, a więc: Stąd, eff może być obliczona na podstawie PE(K) ze wzoru: Rys. 2. Opis równania  dwa prawdopodobieństwa. Dla przesunięcia C prawdopodobieństwo to jest dane równaniem: Przy założeniu, że deformacja (rozciągnięcie) kłębka eliminuje liczbę mikrokonformacji zdolnych do wykonania przesunięcia K równoważną ilości segmentów „wyciągniętych” z kłębka [2], liczba segmentów łańcucha, które ze względu na wzajemne lokalne położenia wnoszą wkład do entropii konformacyjnej łańcucha wynosi: 1.2.Efekt objętości wyłączonej Z uwagi na efekt objętości wyłączonej, próba przesunięcia segmentu może zakończyć się niepowodzeniem. Dla przesunięcia R liczba dostępnych wolnych węzłów sieci jest równa eff [1]. Liczbę tą można powiązać z prawdopodobieństwem PE(R), że mikromodyfikacja R trafi na pusty węzeł sieci równaniem: Dla długich niezakłóconych łańcuchów (przy N) wartość eff wynosi 4.6839066 [3], co pozwala na oszacowanie PE(R). Powyższe równanie jest nieprzydatne w przypadku łańcucha poddanego rozciąganiu, w którym końcowe segmenty są unieruchomione przez ograniczenia geometryczne (PE(R)=0). Pomiędzy prawdopodobieństwami PE(R) i PE(K) istnieje związek, który można wykorzystać do obliczenia eff dla każdej deformacji łańcucha. Porównanie znormalizowanych wyników symulacji Expanded Ensemble MC [4] z wynikami uzyskanymi z cMC. 3.SYMULACJE Symulacje konformacji liniowych makrocząsteczek przeprowadzono metodą Metopolis MC na regularnej trójwymiarowej sieci prymitywnej. Modyfikacje konformacji przeprowadzono za pomocą zmodyfikowanego algorytmu Verdiera-Stockmayera. W trakcie symulacji położenia skrajnych segmentów łańcucha odpowiadały zadanej odległości i pozostawały niezmienne. Rozmiary pudła symulacyjnego wynosiły 601b (b – długość segmentu). Uwzględniano także efekt objętości wyłączonej, a energie oddziaływań PP (segment-segment), SP (segment-rozpuszczalnik) i SS (rozpuszczalnik-rozpuszczalnik) przyjęto za równe zero (roztwór atermiczny, =0). 4.ZESTAWIENIE SYMBOLI kB – stała Boltzmanna, L – odległość pomiędzy końcami łańcucha, N – liczba segmentów łańcucha, P – prawdopodobieństwo sukcesu przy próbie przesunięcia segmentu S – entropia konformacyjna łańcucha,  – liczba koordynacyjna sieci. Indeks 0 oznacza wartość parametru dla łańcucha niezakłóconego. Indeks eff oznacza efektywną wartość parametru. 5.BIBLIOGRAFIA [1] Zhao, D., He, Z., Qian, R.: J. Chem Phys. 104, 1672-1674 (1996). [2] Saeki S.: Polymer, 41, 8331-8338 (2000) [3] A.D. Sokal, Monte Carlo and Molecular Dynamics Simulation in Polymer Science ed. K.Binder, Oxford University Press, New York 1995 [4] Vorontsov-Velyaminov P.N., Ivanov D.A., Ivanov S.D., Broukhno A.V.,Colloids Surfaces. A, 148, 171-177 (1999)

More Related