1 / 24

Y55 Kansantaloustieteen perusteet Yrityksen teoria: tuotanto ja kustannukset

Y55 Kansantaloustieteen perusteet Yrityksen teoria: tuotanto ja kustannukset. M&T 2008, luku 13 27.9.2010 Helsingin Yliopisto Maatalous-metsätieteellinen tiedekunta. Oppimistavoitteet. Luennolla tulet oppimaan mitkä ovat yrityksen eri tyyppiset kustannuserät

amma
Download Presentation

Y55 Kansantaloustieteen perusteet Yrityksen teoria: tuotanto ja kustannukset

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Y55 Kansantaloustieteen perusteetYrityksen teoria: tuotanto ja kustannukset M&T 2008, luku 13 27.9.2010 Helsingin Yliopisto Maatalous-metsätieteellinen tiedekunta

  2. Oppimistavoitteet Luennolla tulet oppimaan • mitkä ovat yrityksen eri tyyppiset kustannuserät • mikä on suhde yrityksen tuotantoprosessin ja tuotannon kokonaiskustannuksen välillä • minkä muotoinen on tyypillinen yrityksen kokonaiskustannuskäyrä • mitä ovat keskimääräiset kokonaiskustannukset ja rajakustannukset ja mikä on niiden välinen suhde • mikä suhde on pitkän aikavälin ja lyhyen aikavälin kustannusten välillä

  3. Yritys pyrkii maksimoimaan voittoaan 1 • Voitto = Kokonaistulot – kokonaiskustannukset • Kokonaistulot ovat myyty määrä kerrottuna tuotteen hinnalla • Yrityksen kokonaiskustannukset sisältävät kaikki tuotantoon liittyvät vaihtoehtoiskustannukset. • Yrityksen tuotantokustannuksiin kuuluu • välituotteiden ja tuotantopanosten ostamisesta syntyvät ns. eksplisiittiset kustannukset sekä • ns. implisiittiset kustannukset, kuten yrittäjän oman työpanoksen vaihtoehtoiskustannukset eli se tulo, jonka yrittäjä voisi ansaita, jos olisi muualla töissä.

  4. Taloudellinen voitto 1 • Kun myyntitulot ovat suuremmat kuin eksplisiittisten ja implisiittisten kustannusten summa, yritys saa positiivista taloudellista voittoa • Voitto formaalimmin: • Voitto = PQ – WL – VK • Q on tuotettu määrä (quantity), joka myydään hinnalla P (price) • Käytetyt tuotantopanokset ovat työvoima L (labour) ja pääoma K (capital) • Työvoiman L yksikköhinta W ja pääoman yksikköhinta V

  5. Taloudellisen voiton käsite kansantalous-tieteessä eroaa laskentatoimen voitosta 1 • Kansantaloustieteessä voitolla tarkoitetaan myyntitulojen ja kokonaiskustannusten erotusta. • Kokonaiskustannuksiin luetaan sekä implisiittiset että eksplisiittiset kustannukset. • Tätä voiton käsitettä kutsutaan taloudelliseksi voitoksi (engl. economicprofit) eli puhtaaksi voitoksi (engl. pure profit) • Laskentatoimessa sen sijaan kokonaiskustannuksiin luetaan ainoastaan eksplisiittiset kustannukset. • Laskentatoimen voiton käsitettä kutsutaan laskennalliseksi voitoksi (engl. accountingprofit). • Taloudellinen voitto on pienempi kuin laskentatoimen voitto.

  6. Vertaile: taloudellinen voitto ja laskennallinen voitto 1 Taloudellinen voitto Laskennallinen voitto Implisiittiset kustannukset Myyntitulot Myyntitulot Kaikki Vaihtoehtois- kustannukset Eksplisiittiset kustannukset Eksplisiittiset kustannukset

  7. 2 Esimerkki: Tuotanto ja kokonaiskustannukset Taulukossa 1 on esitetty esimerkkinä pizzan tuotantofunktio, joka kuvaa työntekijöiden lukumäärää, pääoman ja tuotoksen välistä riippuvuutta, kun pääomakanta K (esimerkiksi tehtaan koko) on vakio. Kolmas sarake kuvaa työvoiman rajatuottavuutta (engl. marginal product). Tuotantopanoksen rajatuottavuus on kokonaistuottavuuden lisäys, joka saadaan kun tuotantopanoksen määrää kasvatetaan yhdellä yksiköllä. Taulukko 1

  8. Tuotantoprosessia kuvataan tuotantofunktiolla 2 • Tuotantopanosten määrän ja tuotetun määrän välistä suhdetta kuvaa ns. tuotantofunktio. • Tuotantofunktio on tuotteen valmistusprosessin matemaattinen kuvaus: Q = F(L,K). • Tuotantofunktio siis kuvaa tuotoksen Q ja panosten L ja K välistä riippuvuutta. • Tuotantofunktio kuvaa yrityksen tuotantoteknologiaa eli kertoo, miten tuotannonpanoksista saadaan aikaan tuotanto.

  9. Vähenevän rajatuotoksen laki johtaa loivenevaan tuotantokäyrään 2 • Seuraava kuvio havainnollistaa taulukossa 1 kuvattua tuotantofunktiota. • Taulukosta ja kuviosta voidaan nähdä, että tuotos Q kasvaa työntekijöiden lukumäärän L kasvaessa, mutta vähenevällä vauhdilla. • Vähenevä rajatuottavuus (engl. diminishing marginal product) • Tuotantofunktion kulmakerroin mittaa tuotantotekijän rajatuottavuutta (kuviossa esim. työvoiman rajatuottavuutta). • Kun rajatuottavuus laskee, tuotantofunktio muuttuu loivemmaksi.

  10. 2 Tuotantofunktio graafisesti havainnollistettuna Pitsojen Määrä Per tunti Tuotantokäyrä 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 Työntekijöiden määrä 0 1 2 3 4 5

  11. Vähenevä rajatuotos matemaattisesti (vain erityisesti kiinnostuneille) 2 • Edellä kerrottiin, että • työvoiman rajatuottavuus (marginal product of labour) MPL = ΔQ/ΔL kuvaa tuotoksen kasvuvauhtia kun työpanos kasvaa ”vähän”, esimerkiksi yhden yksikön • rajatuotos on aleneva • Olkoon tuotantofunktio Q = Q(L,K), jossa pääoma K on vakio ja L työvoima muuttuva. • Siten työvoiman rajatuotos on tuotantofunktion derivaatta työvoiman suhteen eli : dQ/dL

  12. Mikä on tuotantofunktion ja kustannusfunktion suhde? 3 • Muistetaan, että tuotantofunktio ilmaistiin Q = F(L,K). • Tuotoksen Q ja kustannusten TC (total cost) välistä riippuvuutta voidaan ilmaista kustannusfunktiolla TC(Q). • Olkoon työvoiman L yksikköhinta W ja pääoman K yksikköhinta V. • Tuotantokustannukset ovat tällöin WL + VK. • Kustannusfunktion avulla voidaan esittää tuotannontekijöiden käytöstä syntyvät kustannukset WL + VK tuotoksen Q suhteen. • Tuotantopanosten (työvoiman) aleneva rajatuottavuus johtaa jyrkkeneviin kokonaiskustannuksiin. • Näin on, koska yhden lisäyksikön tuottaminen on kalliimpaa.

  13. Kokonaiskustannuskäyrä on kustannusfunktion kuvaaja 3 Kokonais- kustannukset, TC Kokonaiskustannuskäyrä TC € 80 70 60 50 40 30 20 10 Tuotettu määrä (pizzat/tunti) 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

  14. Kustannuskäsitteitä: muuttuvat ja kiinteät kustannukset 4 • Kokonaiskustannukset TC voidaan jakaa • muuttuviin kustannuksiin VC (engl. variable costs), jotka muuttuvat tuotoksen muuttuessa, • kiinteisiin kustannuksiin FC (engl. fixed costs), jotka eivät muutu tuotoksen muuttuessa.

  15. Kustannuskäsitteitä: keskimääräiset kustannukset 4 • Keskimääräiset kustannukset eli yksikkökustannukset (engl. average costs) ovat kustannukset tuotoksen määrää kohti. • Voidaan erottaa • keskimääräiset kokonaiskustannukset (engl. average total costs) ATC = TC/Q, • keskimääräiset kiinteät kustannukset (average fixed costs) AFC = FC/Q, • keskimääräiset muuttuvat kustannukset (average variable costs) AVC = VC/Q • Määritelmän mukaan: ATC = AFC + AVC

  16. Kustannuskäsitteitä: rajakustannukset 4 • Rajakustannukset (engl. marginal costs) MC kuvaavat kokonaiskustannusten muutosvauhtia tuotoksen määrän muuttuessa ”vähän”: MC = ΔTC/ΔQ • Matemaattisesti, jos kustannusfunktion matemaattinen muoto TC=TC(Q) tunnetaan, voidaan rajakustannukset johtaa derivoimalla kustannusfunktio tuotetun määrä Q suhteen: MC = dTC/dQ

  17. Täydennätaulukko: rajakustannus 4

  18. 4 Täydennä taulukko: eri kustannuskäsitteitä

  19. Kustannukset graafisesti havainnollistettuna: Kokonaiskustannuskäyrä 4 Kokonais- kustannukset, TC TC kokonaiskustannuskäyrä €15.00 14.00 13.00 12.00 11.00 10.00 9.00 8.00 7.00 6.00 5.00 4.00 3.00 2.00 1.00 Q tuotettu määrä (laseja limsaa/tunti) 0 1 2 3 4 5 6 7 8 9 10

  20. Kustannuskäyrien muodosta: rajakustannuskäyrä on nouseva 4 • Rajakustannuskäyrä on nouseva, mikä heijastaa alenevaa rajatuotosta • Selitys: Kun tuotos Q kasvaa, niin joudutaan palkkaamaan lisää työvoimaa L • Jos työvoiman rajatuotos vähenee, niin rajakustannukset kasvavat, koska yhden lisäyksikön tuottamiseksi joudutaan palkkaamaan enemmän väkeä kuin ennen.

  21. 4 Kustannuskäyrien muodosta: ATC-käyrä on U-kirjaimen muotoinen • Keskimääräisten kustannusten ATC-käyrä on U:n muotoinen. • Muista, että ATC-käyrä on summa AFC- ja AVC-käyristä. • Alhaisella tuotannon tasolla kiinteä kustannus jakaantuu vain muutamalle yksikölle. Tuotantomäärän kasvaessa ATC laskee, kunnes AVC muodostuu niin suureksi, että ATC alkaakin nousta. • ATC:n minimipistettä kutsutaan tuotannon tehokkaaksi tasoksi (engl. efficient scale) • Rajakustannusten MC kuvaaja leikkaa ATC-käyrän sen minimipisteessä. • Kun MC < ATC, niin ATC alenee Q:n kasvaessa. • Kun MC > ATC, niin ATC kasvaa Q:n kasvaessa.

  22. Kustannukset graafisesti havainnollistettuna: Keskimääräiset kustannukset ja rajakustannukset 4 MC,ATC,AVC,AFC € 3.50 3.25 3.00 2.75 2.50 2.25 MC 2.00 1.75 ATC 1.50 1.25 AVC 1.00 0.75 0.50 AFC 0.25 Q tuotettu määrä (laseja limsaa/tunti) 0 1 2 3 4 5 6 7 8 9 10

  23. 5 Miten kustannukset pitkällä aikavälillä ja lyhyellä aikavälillä eroavat toisistaan? • Edellä oletettiin, että pääomapanos K oli kiinteä. • Tästä oletuksesta tulivat kiinteät kustannukset FC (engl. fixed costs). • On tärkeää huomata, että • riittävän pitkällä aikavälillä kaikki kustannukset ovat muuttuvia • yritys voi lopettaa toimintansa • …tai investoida lisää, eli kasvattaa pääomapanosta

  24. Yhteenveto luvun keskeisistä tuloksista • Yritykset maksimoivat voittoaan, joka on erotus kokonaistulon ja kokonaiskustannuksen välillä. • Kokonaiskustannukset käsittävät niin eksplisiittiset kuin implisiittiset kustannukset eli kaikki yrityksen vaihtoehtoiskustannukset. • Tyypillisellä yrityksellä on aleneva rajatuottavuus. • Tästä johtuen kokonaiskustannukset ovat jyrkkenevät. • Rajakustannus kertoo kustannuslisän, joka aiheutuu yhden lisäyksikön tuottamisesta. • Tyypillisellä yrityksellä rajakustannus nousee tuotannon kasvaessa. • Rajakustannuskäyrä leikkaa keskimääräisten kustannusten käyrän sen minimissä. • Kustannusten rakenne riippuu tarkasteltavasta aikavälistä.

More Related