1 / 6

Equazioni Indefinite di equilibrio per le Travi

Equazioni Indefinite di equilibrio per le Travi

Download Presentation

Equazioni Indefinite di equilibrio per le Travi

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Equazioni Indefinite di equilibrio per le Travi Esistono delle relazioni differenziali che devono essere soddisfatte, sezione per sezione, in una struttura in condizioni di equilibrio. Come è noto in una generica sezione, le caratteristiche di sollecitazione sono una azione assiale, un momento flettente ed un taglio. q F x HB O p VA VB y

  2. Consideriamo per la trave assegnata un concio di trave contenuto tra le sezioni alle ascisse x e x + dx, di lunghezza dx. Sia q l’intensità di un carico distribuito ortogonale alla linea d’asse e p l’intensità di un carico distribuito applicato lungo l’asse della trave. I carichi q e p siano continue nel tratto considerato. Nell’estrarre il concio elementare si sono evidentemente effettuati due tagli alle ascisse x e x + dx, per cui il sistema di forze agenti sul concio è costituito dai carichi distribuiti q e p e dalle azioni interne sulle sezioni dove sono stati effettuati i tagli. Scriviamo le equazioni di equilibrio alla traslazione orizzontale e verticale ed alla rotazione intorno al baricentro della sezione di ascissa x+dx. I carichi q e p possono essere considerati nel tratto infinitesimo dx costanti.

  3. Equilibrio alla traslazione orizzontale: -N + (N+dN) + p dx = 0 ; Equilibrio alla traslazione verticale: T –(T+dT) - q dx = 0 ; Equilibrio alla rotazione : -M + M+dM –Tdx + qdx2/2 = 0. Semplificando e trascurando nell’equilibrio alla rotazione gli infinitesimi q M T M+dM T+dT y dx N p N+dN T+dT di ordine superiore, si ricavano le equazioni indefinite di equilibrio:

  4. Le relazioni precedenti sono le equazioni indefinite di equilibrio interno per la trave. Esse sono valide in tutti i punti in cui le funzioni q e p sono continue e vanno combinate con opportune condizioni al contorno per determinare le funzioni incognite N, T e M. Si nota che nei tratti in cui il carico q è nullo, l’azione tagliante è costante ed il momento flettente è lineare, mentre quando q è costante il taglio lungo la linea d’asse è lineare ed il momento flettente è una funzione quadratica, ovvero una parabola. Osservazione 1: Nelle sezioni in cui l’azione di taglio si annulla, il momento flettente risulta massimo (derivata prima nulla, derivata seconda negativa) o minimo (derivata prima nulla, derivata seconda positiva). Osservazione 2: Nelle sezioni in cui l’azione tagliante è diversa da zero (T≠0), esiste sempre il momento flettente (può annullarsi in qualche sezione ma non in un tratto finito).

  5. Un carico trasversale o la componente ortogonale all’asse della trave di un carico concentrato P produce, oltre ad una discontinuità nel diagramma del taglio, un punto angoloso nel diagramma del momento flettente. Azione tagliante O P A Momento flettente

  6. Esempio: Coppia concentrata su una trave appoggiata. M M/L M/L Azione tagliante A M/L M Momento flettente Una coppia concentrata M causa una discontinuità nel diagramma del momento flettente ma non dell’azione tagliante.

More Related