160 likes | 276 Views
Unit 3. Trigonometry Review Sin & Cos Graphs. y = a sin b ( x – c ) + d. y = sin x = 1 sin 1( x – 0) + 0. Maximum value = 1. 2 π. π. Minimum value = – 1. Amplitude. y = a sin b ( x – c ) + d. y = sin x = 1sin 1 ( x – 0) + 0. 2 π. π. Period =.
E N D
Unit 3 Trigonometry Review Sin & Cos Graphs
y = asin b(x – c) + d y = sin x = 1sin 1(x – 0) + 0 Maximum value = 1 2π π Minimum value = – 1 Amplitude
y = a sin b(x – c) + d y = sin x = 1sin 1(x – 0) + 0 2π π Period =
y = a sin b(x – c) + d y = sin x = 1sin 1(x – 0) + 0 2π π Phase Shift = c = 0
y = a sin b(x – c) + d y = sin x = 1sin 1(x – 0) + 0 2π π Vertical displacement =
y = sin x sin x = 0 0 2π 4π –4π –2π π 3π –π –3π x-intercepts 0 + 2πn, n ε I x-intercepts + 2πn, nε I y-intercept (0, 0)
y = a sin b(x – c) + d max = Period = radians min = Amplitude = Phase Shift = c = a = 2 Vertical displacement = d =
y = a sin b(x – c) + d Period = max = min = Phase Shift = c = Amplitude = a = 3 Vertical displacement = d =
y = a sin b(x – c) + d Period = max = min = Phase Shift = c = Amplitude = a = 3 Vertical displacement = d =
y = a cosb(x – c) + d y = cosx = 1cos 1(x – 0) + 0 Maximum value = 1 Minimum value = – 1 x-intercepts + 2πn, n ε I Amp a = 1 x-intercepts + 2πn, n ε I Period = y-intercept (0, 1) Phase Shift = c = 0 Vertical displacement =
y = a cosb(x – c) + d Period = max = Phase Shift = c = min = Amplitude = a = Vertical displacement = d =
y = a cosb(x – c) + d Period = max = 6 min = Phase Shift = c = Amplitude = a = 5 Vertical displacement = d =
y = 3sin 2(x – ) + 1 a = 3 d = 1 c = Period =
y= 4cos 3(x + ) – 2 Period = c = a = 4 d = – 2