1 / 28

Kvantitatív módszerek

Kvantitatív módszerek. Készítette: Dr. Csizmadia Tibor csizi@gtk.uni-pannon.hu A/131. 11-13. Tartalom. Alapfogalmak Szabályozókártyák Folyamatképességi indexek Mérési bizonytalanság Példák szabályozókártyára Példák folyamatképességi indexre.

callie
Download Presentation

Kvantitatív módszerek

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Kvantitatív módszerek Készítette: Dr. Csizmadia Tibor csizi@gtk.uni-pannon.hu A/131 11-13.

  2. Tartalom Alapfogalmak Szabályozókártyák Folyamatképességi indexek Mérési bizonytalanság Példák szabályozókártyára Példák folyamatképességi indexre

  3. SPC (Statistical Process Control)Statisztikai Folyamat Szabályozás Egy megfelelőségi paramétert vizsgálunk → előírás → eltérés esetén beavatkozunk. Kialakuló tendencia esetén is beavatkozunk, mielőtt a folyamat rossz lenne. Tömeggyártásnál alkalmazzák. CL: central line UCL: Upper control limit LCL: Lower Control Limit LNTL, UNTL /NTL: Natural Tolerance Limit / LSL, USL /SL: Specification Limit /

  4. SPC Centrális határeloszlás tétele Stabilitás Várható értéke időben nem változik Ingadozás egy meghatározott értéken belül van. Jövőbeni viselkedés előre jelezhető Képesség: előírásoknak való megfelelés Folyamat képességének szabályozására: Cp, Cpk Cp= (USL-LSL)/6σ Cpk= min { Cpu, Cpl } Cpu= (USL-μ)/3σ Cpl= (μ-LSL)/3σ

  5. SPC Normális eloszlást követő változóból vett adatok 99,73%-a az x ± 3σ 95,45%-a az x ± 2σ 68,27%-a az x ± 1σ határok között helyezkedik el. ÁBRA Döntési hibák: később

  6. SPC Az ellenőrzőkártyák fényt derítenek a következőkre Kiugró értékem van. (Mi az oka?) Várható érték eltolódott. (Még nem gyártok selejtet) Tendencia mutatkozik, be kell avatkozni (kopás) Ciklikusság mutatkozik. (Műszak, kezelők) Probléma van a várható értékkel. Nagyon jó a folyamat, új határokat számítok ki. ( A határok nem a tényleges σ alapján lettek kiszámítva) Statisztikai ellenőrző kártyák használata Előzetes adatfelvétel Gyártásközi ellenőrzés Külső előírások alapján történő szabályozás

  7. Western Electric szabályozókártyák Mikor avatkozunk be? Ha egy pont az A zónán kívül esik. /fizikailag nem megfelelő/ Ha 9 egymást követő pont az egyik féltekén van. /Lehet, hogy a várható értékem eltolódott/ 6 egymást követő pont növekvő vagy csökkenő jellegű. /Várható értékem folyamatosan tolódik el./ Aszerint, hogy a folyamatból vett minta milyen skálán értékelhető, 2 csoportba soroljuk őket: Méréses /méret, tömeg, átmérő, ph, stb/ Minősítéses /selejtszám, selejtarány, hibaszám/

  8. Méréses ellenőrző kártyák Egy mért jellemzőt vizsgálunk → Objektív számadatok → Ez alapján szabályozunk Mindig párban használom (Várható értéket + ingadozást vizsgálom.) Várható érték: Átlagkártya Mediánkártya Egyedi érték kártya Ingadozás: Terjedelemkártya Szóráskártya Szórásnégyzetkártya Mozgó terjedelem kártya

  9. Minősítéses ellenőrző kártyák Egyedül használjuk őket Selejtszám és selejtarány kártya (np, p) Hibakártyák (c, u) Kártyatípusok

  10. SPC - Döntés A specifikációs határok megválasztásával döntünk a felvállalt hibákról. x ± 3σ határok esetén az első fajú hiba: 0,27% Szabályozott folyamat esetén is lehet hiba Téves riasztás vagy az átadó (gyártó) kockázata Másodfajú hiba: Elmaradt riasztás esete vagy az átvevő (fogyasztó, vevő) kockázata

  11. A mérési bizonytalanság Standard bizonytalanság: u Eredő bizonytalanság: uc Kiterjesztett bizonytalanság: U = k uc * pl. N(0;σ) y y - U y +U A mérési bizonytalanság a GUM definíciója szerint: „A mérési eredményhez társított paraméter, amely a mérendő mennyiségnek megalapozot-tan tulajdonítható értékek szóródását jellemzi.” • GUM: Guide to the Expression of Uncertainty in Measurement (1993) • Alapja: A mért eredmény nem azonos a valós értékkel! • Laboratóriumokban már régóta használt a mérési bizonytalanság fogalma, de figyelembe-vétele hasznos az ipari környezetben is.

  12. SPC vs. GUM SPC Jól működő, a gyakorlatban is bevált folyamat irányítási módszer A termékek megfelelőségét vizsgálja Szabályozó kártyákat alkalmaz Méréses Minősítéses kártyák Mérőműszerrel mérünk Nem veszi figyelembe a mérés bizonytalanságát, még akkor sem, ha az ismert A mérési bizonytalanság kutatások (ISO –GUM) Többfajta eloszlás esetén is meghatározható a mérőműszer bizonytalansága Konkrét módszert tartalmaz a mérés bizonytalanságának meghatározására Ez egy ajánlás Elsősorban laboratóriumi körülmények között alkalmazzák Nem foglalkozik azzal, hogy adott bizonytalanság ismeretében hogyan döntsünk SPC + GUM

  13. Döntési kimenetelek valószínűségei Ténylegesen megfelelő termékek Megfelelőnek tartott termékek

  14. A rossz termék eladásából is keletkezik bevétel (r01), de többletköltség is fellép: - A termék javítása vagy olcsóbb értékesítése miatt (π01>0) - A hibás termék visszavásárlása miatt (π01<0) - Presztízsveszteség, partner üzlettől valóelállása miatt (π01<<0) Profitok alakulása

  15. Mindendarabos ellenőrzés A termék megfelelőségét a méreteinek tűréshatárokhoz viszonyított elhelyezkedése szabja meg. Mérési pontjainkat helyettesítsük tartományokkal, amelyek nagyságát a mérőműszer szórása és a döntési költségek határozzák meg. • A mérési eredményekre alapozott döntéseink hibásak lehetnek: • A jó terméket selejtezzük le. (elsőfajú hiba) • A rossz terméket engedjük tovább. (másodfajú hiba) • Ezek a hibák költségekkel, bevételkieséssel járnak A kU és kL értékek optimalizálandóak adott egységnyi profit mellett.

  16. A bizonytalanság figyelembevételének eredménye • Profit alakulása a mérőműszer szórása és a kiterjesztési tényező függvényében

  17. A módszer alkalmazhatósága a gyakorlatban A folyamat eloszlásának ismeretét a döntések során sehol nem használtuk ki! Elegendő a mérőműszer bizonytalanságát ismernünk, illetve a rossz döntéseinkből adódó költségeket Ebből fakadóan az optimális k értéke meghatározható.

  18. Eredmények A mérés bizonytalanságot figyelembe véve: Jelentős profitnövekedés érhető el Az összes veszteségköltség felépítése megváltozik Megnő a nem megfelelőnek ítélt, de feltételezhetően jó termék aránya A nem megfelelő termékek gyakorlatilag (adott költség- és profitstruktúrától függően) 100%-os mértékben kiszűrhetők

  19. Összefoglalás Érdemes a mérési bizonytalanságot a döntéseink során figyelembe venni A profit növelhető Számos iparágban alkalmazható Sztochasztikus folyamatként kezelve a problémát, előrejelzéseknél is figyelembe vehető a mérési bizonytalanság

  20. Méréses és minősítéses kártyák összevetése Méréses ellenőrző kártyák: Folytonos valószínűségi változóval dolgoznak. Több információt adnak, érzékenyebbek. Tetemes selejt előtt jelzik a hibákat. Kisebb mintaelemszám. A mérés költségesebb, mint a minősítés. Minősítéses ellenőrző kártyák Diszkrét valószínűségi változóval dolgozik. Nagyobb mintaelemszám. Kevésbé költséges.

  21. Méréses ellenőrző kártyát használjunk, ha új folyamattal van dolgunk, vagy új terméket gyártunk; működő folyamat nem képes az előírásokat betartani; roncsolásos vagy drága a vizsgálat, mert a minősítéshez sokkal több minta kell; a folyamat megfelelő működése esetén csökkenteni akarjuk a mintavételezés és ellenőrzés mértékét; minősítéses kártyát próbáltunk használni, de a folyamat instabil (veszélyes hibák jelentkezhetnek); nagyon szigorúak a tűrési előírások (összeszerelés); a termék minőségi előírásai megváltoztak; a folyamat stabilitása és képessége állandóan bizonyítandó (gyógyszeripar).

  22. Minősítéses ellenőrző kártyát használjunk, ha A folyamat bonyolult, és csak azzal jellemezhető, hogy jó, vagy nem jó (pc, autó); A folyamatot szabályozni kell, de nincs mérési lehetőség; A folyamatról információt kell szolgáltatni a vezetésnek, a mérés költsége nagyon magas.

  23. Méréses példa

  24. Példa – folyamatképességi indexre Cp, Cpk

  25. Minősítéses példa

  26. Példa - SPSS

  27. Irodalom • Zs. T. Kosztyán, T. Csizmadia, Cs. Hegedűs, Z. Kovács: Treating measurement uncertainty in complete conformity control system, CISSE 2008. • Kemény-Papp-Deák: Statisztikai minőség- (megfelelőség-) szabályozás. Műszaki könyvkiadó, Budapest, 1999 • Ketskeméty László, Izsó Lajos: Bevezetés az SPSS programrendszerbe, ELTE Eötvös Kiadó, 2005

  28. 11-13.

More Related