1.1k likes | 1.34k Views
WZROST II. Solow dowiódł, że proces wzrostu jest STABILNY. Gospodarka AUTOMATYCZNIE OSIĄGA STAN, W KTÓRYM WZROST JEST ZRÓWNOWAŻONY, I TRWA W TYM STANIE. y=Y/L s y C/L ( C/L) E. ( C/L) E =n k. y=g(k). y*. s y= s g(k)= C/L. E. tgα=n. α. 0. k=C/L. k*.
E N D
Solow dowiódł, że proces wzrostu jest STABILNY. Gospodarka AUTOMATYCZNIE OSIĄGA STAN, W KTÓRYM WZROST JEST ZRÓWNOWAŻONY, I TRWA W TYM STANIE. y=Y/L sy C/L (C/L)E (C/L)E=nk y=g(k) y* sy=sg(k)= C/L E tgα=n α 0 k=C/L k*
PRZYŚPIESZANIE WZROSTU GOSPODARCZEGO Czy zwiększenie stopy oszczędności, s, i technicznego uzbrojenia pracy, k, zapewni TRWAŁE przyśpieszenie wzrostu?
y=Y/L · s y · ( C/L ) = n k D D C/L E D ( C/L) E Czy zwiększenie stopy oszczędności, s, i technicznego uzbrojenia pracy, k, zapewni TRWAŁE przyśpieszenie wzrostu? y=g(k) · · s’ y=s’ g(k) E 1 · · s y=s g(k) E 0 k=C/L k k 1 0
PRZYŚPIESZANIE WZROSTU GOSPODARCZEGO y=Y/L · s y · ( C/L ) = n k D D C/L E D ( C/L) E Czy zwiększenie stopy oszczędności, s, i technicznego uzbrojenia pracy, k, zapewni TRWAŁE przyśpieszenie wzrostu? y=g(k) · · s’ y=s’ g(k) E 1 · · s y=s g(k) E 0 k=C/L k k 1 0 W punkcie E1 tempo wzrostu nadal równa się tempu wzrostu licz-by ludności, n, jak miało to miejsce w punkcie E0. Oznacza to, że – mimo przesunięcia się w górę wykresu funkcji oszczędności - NIE DOSZŁO DO TRWAŁEGO PRZYŚPIESZENIA WZROSTU GOSPODARCZEGO.
A zatem zgodnie z neoklasycznym modelem wzrostu W DŁUGIM OKRESIE stopa oszczędności, s, nie wpływa na stopę wzrostu gos-podarczego. A jednak statystyka ujawnia korelację tych dwóch zmien-nych... Oto odkryliśmy DRUGĄ ważną NIEDOSKONAŁOŚĆ NE-OKLASYCZNEGO MODELU WZROSTU!
y=Y/L A CO DZIEJE SIĘ W TRAKCIEOKRESU, GDY„k” ROŚNIE Z k0 DO k1? · s y D · ( C/L ) = n k D C/L E D ( C/L) E y=g(k) y1 y0 · · s’ y=s’ g(k) E 1 · · s y=s g(k) E 0 k k k=C/L 1 0
y=Y/L Zwiększanie się k powoduje wtedy DODATKOWE PRZYROSTY PRODUKCJI PONAD TE SPOWODOWANE ZWIĘKSZENIEM SIĘ LICZBY PRACUJĄCYCH (WSZAK y ROŚNIE Z y0 DO y1!). Wzrost gospodarczy przyśpiesza. Efekt ten zanika po powrocie gospodarki na ścieżkę wzrostu zrównoważonego w punkcie E1. · s y D · ( C/L ) = n k D C/L E D ( C/L) E y=g(k) y1 y0 · · s’ y=s’ g(k) E 1 · · s y=s g(k) E 0 k k k=C/L 1 0
Produkcja Wzrost „s” powoduje PRZEJŚCIOWE PRZYŚPIESZENIE TEM-PA WZROSTU. Po powrocie gospodarki na ścieżkę wzrostu zrów-noważonego stopa wzrostu powraca do poprzedniego poziomu (zob. rysunek niżej). Nowa ścieżka wzrostu zrównoważonego α1 Ścieżka przejściowa wzrostu przyśpieszonego Stara ścieżka wzrostu zrównoważonego α2>α1 α1 0 Lata
OPŁACALNOŚĆ OPERACJI PRZYŚPIESZENIA WZROSTU JEST SPRAWĄ OTWARTĄ... Przecież wzrost skłonności do oszczędzania z s do s’oznacza spadek skłonności do konsumpcji (z AE/Ak0 do BE1/Bk1 na rysunku poniżej). y=Y/L · s y · D ( C/L ) = n k D C/L E D ( C/L) E B y=g(k) y1 y0 A · · s’ y=s’ g(k) · E 1 · · s y=s g(k) · E 0 k k k=C/L 1 0 Ceną za PRZEJŚCIOWE przyśpieszenie wzrostu MOŻE się oka-zać zmniejszenie się konsumpcji w początkowej fazie tej operacji.
„ZŁOTA REGUŁA” AKUMULACJI KAPITAŁU Jaki poziom skłonności do oszczędzania, s, zapewnia zmaksyma-lizowanie poziomu konsumpcji per capita w długim okresie?
Jaki poziom skłonności do oszczędzania, s, zapewnia zmaksyma-lizowanie poziomu konsumpcji per capita w długim okresie? Taki, który zapewnia ZMAKSYMALIZOWANIE POZIOMU KONSUMPCJI PER CAPITA W MOMENCIE WEJŚCIA NA ŚCIEŻKĘ WZROSTU ZRÓWNOWAŻONEGO! Od tego momentu konsumpcja rośnie w stałym niezmiennym tempie. Zatem jeśli w tym momencie została ona zmaksymalizo-wana, to także w dowolnie długim okresie osiąga maksymalną możliwą wielkość.
Jaki poziom skłonności do oszczędzania, s, zapewnia zmaksyma-lizowanie poziomu konsumpcji per capita w długim okresie? Taki, który zapewnia zmaksymalizowanie poziomu konsumpcji per capita w momencie wejścia na ścieżkę wzrostu zrównowa-żonego! NA RYSUNKU PONIŻEJ ODPOWIADA JEJ PIONO-WY CZERWONY ODCINEK, KTÓREGO DŁUGOŚĆ ZMIE-NIA SIĘ WRAZ Z POZIOMEM k (por. np. k1 i k2) . y (C/L)E=(n+d)k y=g(k) E 0 k k1 k2
Konsumpcji per capita w momencie wejścia na ścieżkę wzrostu zrównoważonego odpowiada pionowy czerwony odcinek, którego długość zmienia się wraz z poziomem k (por. np. k1 i k2)… Co prawda ten odcinek odpowiada nadwyżce dochodu per capita nad WYMAGANYMI INWESTYCJAMI per capita, a nie nad RZECZYWISTYMIOSZCZĘDNOSCIAMI per capita? y (C/L)E=(n+d)k y=g(k) E 0 k k1 k2
Jednak W STANIE USTALONYM WYMAGANE INWESTYCJE SĄ RÓWNE RZECZYWISTYM INWESTYCJOM (RZECZY-WISTYM OSZCZĘDNOŚCIOM). y (C/L)E=(n+d)k y=g(k) s1y=C/L soy=C/L E 0 k k1 k2
A zatem, jaki poziom skłonności do oszczędzania, s, zapewnia zmaksymalizowanie poziomu konsumpcji per capita w długim ok-resie? Taki, który zapewnia zmaksymalizowanie długości wiadomego odcinka (czyli konsumpcji per capita w momencie wejścia na ścieżkę wzrostu zrównoważonego). y (C/L)E=(n+d)k y=g(k) s1y=C/L soy=C/L 0 k
Taki, który zapewnia zmaksymalizowanie długości wiadomego odcinka (czyli konsumpcji per capita w momencie wejścia na ścieżkę wzrostu zrównowaonego). Ten odcinek jest nadłuższy, gdy nachylenia wykresu MFP (dy/dk) i wykresu wymaganych inwestycji (n+d) się zrównują [dy/dk = (n+d)]. y (C/L)E=(n+d)k y=g(k) 0 k
A zatem, zgodnie ze „ZŁOTĄ REGUŁĄ” AKUMULACJI KAPI-TAŁU (ang. golden rule of capital accumulation) - do zmaksy-malizowania konsumpcji per capita w długim okresie dojdzie pod warunkiem osiągnięcia przez relację kapitał-praca, k, poziomu k*, przy którym: dy/dk=(n+d). y (C/L)E=(n+d)k y=g(k) soy=C/L E 0 k k*
y (C/L)E=(n+d)k y=g(k) A sy=C/L E 0 k k* Zauważ: warunek dy/dk=(n+d)zostanie spełniony, JEŚLI SKŁON-NOŚĆ DO OSZCZĘDZANIA, s, OSIĄGNIE ODPOWIEDNI PO-ZIOM (na rysunku obok chodzi o poziom s).
y (C/L)E=(n+d)k y=g(k) A sy=C/L E 0 k k1k** k2 Powiedzmy, że relacja kapitał-praca w momencie wejścia gospo- darki na ścieżkę wzrostu zrównoważonego wynosi k1… Żeby w długim okresie zmaksymalizować konsumpcję obywateli, należałoby zwiększyć stopę oszczędności i poziom inwes-tycji. Ceną za to okazałoby się jednak przejściowe spowolnienie tempa wzrostu konsumpcji, a może nawet jej spadek… Opłacalność tej operacji zależy od tego, jak społeczeństwo ceni konsumpcję bieżącą w porównaniu z konsumpcją przyszłą…
y (C/L)E=(n+d)k y=g(k) A sy=C/L E 0 k k1k** k2 A teraz załóż, że relacja kapitał-praca równa się k2. Obniżenie sto- py oszczędności spowodowałoby ZARÓWNO wzrost konsumpcji bieżącej, JAK I wzrost konsumpcji przyszłej! Ekonomiści nazywa- ją taką sytuację DYNAMICZNIE NIEEFEKTYWNĄ (ang. dyna- mically inefficient). Oczywiście, DYNAMICZNA NIEEFEKTYWNOŚĆ nie jest stanem pożądanym. (Przecież ludzkie potrzeby zaspokajają dobra konsumpcyjne, nie inwestycyjne).
Zdaniem niektórych na DYNAMICZNĄ NIEEFEKTYWNOŚĆ cierpiały kraje realnego socjalizmu. W tych krajach szczególnie szybko rosła produkcja dóbr inwestycyjnych i dóbr pośrednich, a nie dóbr konsumpcyjnych… Stopy inwestycji w Europie w 1989 r. (w % PKB lub Dochodu Narodowego Wytworzonego - DNW *Dochód Narodowy Wytworzony. Źródło: M. Burda, Ch. Wyplosz, Makroekonomia, PWE, Warszawa 2000, s. 159.
ZADANIE: Oto MFP w gospodarce typu Solowa: Y=C0,25L0,75. Zasoby ludnoś-ci i pracy są stałe;kapitał zużywa się w tempie 3,125% rocznie, re-lacja kapitał/praca k=10. a) Jaki poziom relacji kapitał/praca za- pewnia zmaksymalizowanie konsumpcji w długim okresie?
ZADANIE: Oto MFP w gospodarce typu Solowa: Y=C0,25L0,75. Zasoby ludnoś-ci i pracy są stałe;kapitał zużywa się w tempie 3,125% rocznie, re-lacja kapitał/praca k=10. a) Jaki poziom relacji kapitał/praca za- pewnia zmaksymalizowanie konsumpcji w długim okresie? y (C/L)E=(n+d)k y=g(k) sy=∆C/L E 0 k k1 k2 k3 k4
ZADANIE: Oto MFP w gospodarce typu Solowa: Y=C0,25L0,75. Zasoby ludnoś-ci i pracy są stałe;kapitał zużywa się w tempie 3,125% rocznie, re-lacja kapitał/praca k=10. a) Jaki poziom relacji kapitał/praca za- pewnia zmaksymalizowanie konsumpcji w długim okresie? Szukany poziom k znajdziemy, rozwiązując równanie: dy/dk=(n+d). Zatem: (k*0,25)’=0,03125 → 0,25k*-0,75 =0,03125 → k*=16. y (C/L)E=(n+d)k y=g(k) sy=∆C/L E 0 k k1 k2 k3 k4
ZADANIE: Oto MFP w gospodarce typu Solowa: Y=C0,25L0,75. Zasoby ludnoś-ci i pracy są stałe;kapitał zużywa się w tempie 3,125% rocznie, re-lacja kapitał/praca k=10. a) Jaki poziom relacji kapitał/praca za- pewnia zmaksymalizowanie konsumpcji w długim okresie? Szukany poziom k znajdziemy, rozwiązując równanie: dy/dk=(n+d). Zatem: (k*0,25)’=0,03125 → 0,25k*-0,75 =0,03125 → k*=16. b) Jaka stopa oszczędności, s, zapewnia osiągnięcie tej relacji? y (C/L)E=(n+d)k y=g(k) sy=∆C/L E 0 k k1 k2 k3 k4
ZADANIE: Oto MFP w gospodarce typu Solowa: Y=C0,25L0,75. Zasoby ludnoś-ci i pracy są stałe;kapitał zużywa się w tempie 3,125% rocznie, re-lacja kapitał/praca k=10. a) Jaki poziom relacji kapitał/praca za- pewnia zmaksymalizowanie konsumpcji w długim okresie? Szukany poziom k znajdziemy, rozwiązując równanie: dy/dk= =n+d. Zatem: (k*0,25)’=0,03125 → 0,25k*-0,75 =0,03125 → k*=16. b) Jaka stopa oszczędności, s, zapewnia osiągnięcie tej relacji? Trzeba rozwiązać równanie: s*160,25=0,0312516; s*=0, 25. Właśnie taki poziom skłonności do oszczędzania (s=0,25) zapewnia maksymalizację konsumpcji per capita w dowolnym okre-sie po wejściu przez tę gospodarkę na ścieżkę wzrostu zrównoważo-nego. y (C/L)E=(n+d)k y=g(k) sy=∆C/L E 0 k k1 k2 k3 k4
ZADANIE: Oto MFP w gospodarce typu Solowa: Y=C0,25L0,75. Zasoby ludnoś-ci i pracy są stałe;kapitał zużywa się w tempie 3,125% rocznie, re-lacja kapitał/praca k=10. a) Jaki poziom relacji kapitał/praca za- pewnia zmaksymalizowanie konsumpcji w długim okresie? Szukany poziom k znajdziemy, rozwiązując równanie: ∂y/∂k= =n+d. Zatem: (k*0,25)’=0,03125 → 0,25k*-0,75 =0,03125 → k*=16. b) Jaka stopa oszczędności zapewnia osiągnięcie tej relacji? Trzeba rozwiązać równanie: s*160,25=0,0312516; s*=0, 25. Właśnie taki poziom skłonności do oszczędzania (s=0,25) zapewnia maksymalizację konsumpcji per capita w dowolnym okre-sie po wejściu przez tę gospodarkę na ścieżkę wzrostu zrównoważo-nego. c) Czy ta gospodarka jest „dynamicznie nieefektywna”? Co to zna-czy? y (C/L)E=(n+d)k y=g(k) sy=∆C/L E 0 k k1 k2 k3 k4
ZADANIE: Oto MFP w gospodarce typu Solowa: Y=C0,25L0,75. Zasoby ludnoś-ci i pracy są stałe;kapitał zużywa się w tempie 3,125% rocznie, re-lacja kapitał/praca k=10. a) Jaki poziom relacji kapitał/praca za- pewnia zmaksymalizowanie konsumpcji w długim okresie? Szukany poziom k znajdziemy, rozwiązując równanie: ∂y/∂k= =n+d. Zatem: (k*0,25)’=0,03125 → 0,25k*-0,75 =0,03125 → k*=16. b) Jaka stopa oszczędności zapewnia osiągnięcie tej relacji? Trzeba rozwiązać równanie: s*160,25=0,0312516; s*=0, 25. Właśnie taki poziom skłonności do oszczędzania (s=0,25) zapewnia maksymalizację konsumpcji per capita w dowolnym okre-sie po wejściu przez tę gospodarkę na ścieżkę wzrostu zrównoważo-nego. c) Czy ta gospodarka jest „dynamicznie nieefektywna”? Co to zna-czy? Nie. 10=k<k*=16. Nie jest tak, że obniżenie skłonności do oszczę-dzania pozwoliłoby zwiększyć konsumpcję zarówno w krótkim, jak i w długim okresie. y (C/L)E=(n+d)k y=g(k) sy=∆C/L E 0 k k1 k2 k3 k4
POSTĘP TECHNICZNY W MODELU SOLOWA Do tej pory nie zajmowalismy się postępem technicznym. Pojawie-nie się postępu technicznego, czyli zwiększanie się TFP (i y), powoduje, że wykres MFP stopniowo przesuwa się do góry. Ozna-cza to przyśpieszenie wzrostu globalnego PKB (y/y≈A/A+x·k/k). y=Y/L y”=i(k) y’=h(k) y=g(k) 0 k=C/L
Całkowita produktywność czynników w Stanach Zjednoczonych (przeciętny roczny wzrost, w %) Od roku 1913 przeciętny roczny wzrost A (całkowita produktywność czynników) nabrał tempa. W latach 1972 – 1995 niemal zatrzymał się i – jak się wydaje – znowu gwałtownie przyśpieszył w końcu lat 90. XX wieku. Źródło: M. Burda, Ch. Wyplosz: Macroeconomics. A European Text, Oxford University Press 2009, s. 74.
y/y≈A/A+x·k/k y=Y/L y”=i(k) y’=h(k) y=g(k) 0 k=C/L Zauważmy! Postęp techniczny, który zwiększa TFT (podobnie jak wzrost liczby ludności), ma – w NMW - charakter EGZOGENICZ-NY (nie jest tłumaczony w ramach tego modelu). To TRZECIA NIEDOSKONAŁOŚĆ NMW...
KONWERGENCJA Pomyśl o krajach, które mają dostęp do podobnej technologii. Niech społeczeństwa tych krajów odznaczają się podobną skłon-nością do oszczędzania i podobną dynamiką procesów demogra-ficznych…
KONWERGENCJA Na odpowiednich rysunkach te kraje mają takie same wykresy MFP, oraz wykresy rzeczywistych, inwestycji sy, i wymaganych inwestycji, nk. W tych krajach wykresy rzeczywistych i wymaganych inwestycji przecinają się zatem w tym samych punkcie (na rysunku jest to punkt E). W efekcie produkcyjność pracy, y, i tempo wzrostu produkcji, Y, (równe n!) w tych krajach są takie same. y=Y/L · s y D C/L D · ( C/L) =n k E D ( C/L) E y=g(k) y* C/L=sy=sg(k) E tgα =n α 0 k* k=C/L
y=Y/L · s y Kraje o dostępie do takiej samej technologii [y=f(k) ] i skłonności do oszczędzania, s, i równych: tempie wzrostu zasobu ludności i pracy, n, NIEZALEŻNIE OD ICH POCZĄTKOWEJ SYTUACJI powinny zatem STOPNIOWO osiągać taki sam poziom dochodu per capita, y, i takie samo tempo wzrostu gospodarczego, n! D C/L D · ( C/L) =n k E D ( C/L) E y=g(k) y* C/L=sy=sg(k) E tgα =n α 0 k* k=C/L
OZNACZA TO, ŻE KRAJE O NIŻSZYM „k” I „y” POWINNY ROZWIJAĆ SIĘ SZYBCIEJ NIŻ KRAJE, KTÓRE JUŻ OSIĄG-NĘŁY STEADY STATE. To się nazywa KONWERGENCJA ABSOLUTNA (ang. absolute convergence). y=Y/L · s y D C/L D · ( C/L) =n k E D ( C/L) E y=g(k) y* C/L=sy=sg(k) E tgα =n α 0 k* k=C/L
Czy rzeczywistość potwierdza, tę – wynikającą z modelu Solowa – prognozę? Oto dane empiryczne: Na tym rysunku, zestawiono przeciętną stopę wzrostu gospodarcze-go w 25 rozwiniętych krajach członkowskich OECD w latach 1960 - 2003 oraz wyjściowy poziom PKB per capita w tych krajach w 1960 roku. Wyniki zdecydowanie potwierdzają hipotezę konwergencji. ------------------------------ Źródło: M. Burda, Ch. Wyplosz: Macroeconomics. A European Text, Oxford University Press 2009, s. 83.
O SZYBKOŚCI KONWERGENCJI Stopa wzrostu w gospodarce w okresie t, ∆Yt/Yt, jest wyższa od sto-py wzrostu w stanie ustalonym (a), jeśli rzeczywisty PKB, Yt, jest mniejszy od poziomu PKB, Ȳt, w stanie ustalonym. β>0 opisuje szybkość takiej konwergencji. Im większa jest odległość między rzeczywistym PKB, Yt, a poziomem PKB w stanie ustalonym, Ȳt, tym szybsze jest tempo wzrostu. Dla krajów, których dotyczy nasz rysunek Robert Barro i Xavier Sala-i-Martin wykazali, że – przeciętnie - w ciągu roku luka dochodu per capita zmniejsza się o około 2%. OZNACZA TO, ŻE ZMNIEJSZENIE O POŁOWĘ RÓŻNICY POZIOMU PKB PER CAPITA W DANYM REGIONIE I W RE-GIONIE NAJBARDZIEJ ROZWINIĘTYM, WYMAGA OKOŁO 35 LATA. ---------------------------------- AZałóżmy, że zmienna x rośnie w stałym tempie g% na rok. W takiej sytuacji wartość zmiennej podwoi się po około 70/g latach. Jeśli zaś zmienna ta maleje w tempie g, także po 70/g latach jej wielkość zmniejszy się o połowę. To jest tzw. REGUŁA SIEDEMDZIESIĘ-CIU.
O SZYBKOŚCI KONWERGENCJI cd. Dla krajów, których dotyczy nasz pierwszy rysunek Robert Barro i Xavier Sala-i-Martin wykazali, że – przeciętnie - w ciągu roku luka dochodu per capita zmniejsza się o około 2%. Przykładem jest konwergencja regionów w USA. W 1880 r. PKB per capita na Południu USA wynosił około ⅓ PKB per capita w bogat-szej północnowschodniej Nowej Anglii. Tak niski wyjściowy poziom PKB był skutkiem zniszczenia części kapitału i infrastruktury w trakcie Wojny Secesyjnej. Zmniejszenie tej różnicy do około 10% wymagało ponad stu lat konwergencji. Podobnie, nadzieje na to, że południowe Włochy, wschod-nie Niemcy lub zachodnia Hiszpania szybko dogonią najbogatsze re-giony w tych krajach, nie spełniły się.
Czy rzeczywistość potwierdza wynikającą z modelu Solowa prognozę konwergencji? Oto dane empiryczne, cd.: Natomiast na tym rysunku, który informuje o doświadczeniach gru-py 102 krajów w tym samym okresie (1960-2003), brak jest potwierdzenia zjawiska konwergencji. ------------------------------ Źródło: M. Burda, Ch. Wyplosz: Macroeconomics. A European Text, Oxford University Press 2009, s. 83.
Zatem, w krajach zamożnych (OECD) rzeczywiście trwa konwer-gencja. Kraje te tworzą KLUB KONWERGENCJI (ang. conver-gence clubs). Natomiast część krajów biednych wpadła – jak się wydaje - w PUŁAPKĘ UBÓSTWA (ang. poverty trap) (chodzi o trwałe współ-występowanie niskich: PKB per capita i tempa wzrostu PKB). Jak wyjaśnić ten stan rzeczy?
Wygląda na to, że celem konwergencji są zróżnicowane stany us-talone, które ZALEŻĄ OD INDYWIDUALNYCH CECH KRAJU LUB REGIONU. To jest teza o KONWERGENCJI UWARUNKO-WANEJ (ang. conditional convergence).
Przyczyny braku konwergencji absolutnej: 1. MAŁE OSZCZĘDNOSCI I INWESTYCJE?
y=Y/L · s y · ( C/L ) = n k D D C/L E Kraje o RÓŻNEJ skłonności do oszczędzania (np. s i s’; zob. rysu-nek) i równych: tempie wzrostu liczby ludności i zasobów pracy, n, a także dostępie do takiej samej technologii powinny osiągać takie samo tempo wzrostu PKB, Y, PRZY RÓŻNYM POZIOMIE DOCHODU PER CAPITA, Y! D ( C/L) E y=g(k) y2 y1 · · s’ y=s’ g(k) · · s y=s g(k) E 2 E1 s’>s! 0 k=C/L k k 1 0
y=Y/L · s y · ( C/L ) = n k D D C/L E Kraje o RÓŻNEJ skłonności do oszczędzania (np. s i s’; zob. rysu-nek) i równych: tempie wzrostu liczby ludności i zasobów pracy, n, a także dostępie do takiej samej technologii powinny osiągać takie samo tempo wzrostu PKB, Y, przy RÓŻNYM poziomie dochodu per capita, y! D ( C/L) E y=g(k) y2 y1 · · s’ y=s’ g(k) · · s y=s g(k) E 2 E1 0 k=C/L k k 1 0
y=Y/L · s y · ( C/L ) = n k D D C/L E Kraje o RÓŻNEJ skłonności do oszczędzania (np. s i s’; zob. rysu-nek) i równych: tempie wzrostu liczby ludności i zasobów pracy, n, a także dostępie do takiej samej technologii powinny osiągać takie samo tempo wzrostu PKB, Y, przy RÓŻNYM poziomie dochodu per capita, y! D ( C/L) E y=g(k) y2 y1 · · s’ y=s’ g(k) · · s y=s g(k) E 2 E1 0 k=C/L k k 1 0
y=Y/L · s y · ( C/L ) = n k D D C/L E Kraje o RÓŻNEJ skłonności do oszczędzania (np. s i s’; zob. rysu-nek) i równych: tempie wzrostu liczby ludności i zasobów pracy, n, a także dostępie do takiej samej technologii powinny osiągać takie samo tempo wzrostu PKB, Y, przy RÓŻNYM poziomie dochodu per capita, y! D ( C/L) E y=g(k) y2 y1 · · s’ y=s’ g(k) · · s y=s g(k) E 2 E1 0 k=C/L k k 1 0
y=Y/L · s y · ( C/L ) = n k D D C/L E Kraje o RÓŻNEJ skłonności do oszczędzania (np. s i s’; zob. rysu-nek) i równych: tempie wzrostu liczby ludności i zasobów pracy, n, a także dostępie do takiej samej technologii powinny osiągać takie samo tempo wzrostu PKB, Y, przy RÓŻNYM poziomie dochodu per capita, y! D ( C/L) E y=g(k) y2 y1 · · s’ y=s’ g(k) · · s y=s g(k) E 2 E1 0 k=C/L k k 1 0 Przecież w takich krajach wykres MFP przebiega tak samo, lecz li-nie rzeczywistych inwestycji, sy, oraz inwestycji wymaganych, nk, przecinają się w różnych punktach (zob. E1 i E2 na rysunku), czyli – przy takim samym tempie wzrostu C, L, N, Y - poziom y jest w tych krajach różny (zob. y1 i y2 na rysunku).
Przyczyny braku konwergencji absolutnej: 1. Małe oszczędnosci i inwestycje? TO JEST MAŁO PRAWDOPO-DOBNE… Robert E. Lucas (junior) wyliczył, że jeśliby funkcja produkcji w Indiach i USA byla taka sama, krańcowy produkt kapitału w In-diach byłby 58 razy większy niż w USA! „Jeśliby ten model choć w przybliżeniu odpowiadał rzeczywistości, i jeśliby światowe rynki kapitałowe choć w przybliżeniu przypomina-ły kompletne rynki konkurencyjne, oczywiste jest, że w obliczu tak dużego zróżnicowania zysku, dobra inwestycyjne szybko przeniesio-no by ze Stanów Zjednoczonych i innych bogatych krajów do Indii i innych krajów ubogich. W takiej sytuacji można by nawet oczeki-wać, że w krajach bogatych inwestycje zmniejszyłyby się do zera”.
Przyczyny braku konwergencji absolutnej, CD. • 2. • WIELE KRAJÓW JEST ZACOFANYCH TECHNOLOGICZNIE LUB GOSPODARKA W TYCH KRAJACH NIE DZIAŁA ZADO-WALAJĄCO. • Do tej pory zakładaliśmy milcząco, że wszystkie kraje ma-ją dostęp do takiej samej technologii. • Na rysunku widzimy przykład RÓŻNYCH funkcji pro-dukcji w dwóch identycznych pod innymi względami gospodarkach (gospodarka „czarna” i gospodarka „czerwona”), w których gospo-darstwa domowe oszczędzają taką samą część dochodów, i w któ-rych linie inwestycji wymaganych są takie same. Kraje z RÓŻNY-MI funkcjami produkcji zmierzać będą do różnych stanów ustalo-nych. E 2 y=Y/L · s y · ( C/L ) = n k D D C/L E D ( C/L) E y=f(k) y1 y2 s y=s f(k) y=g(k) E1 s y=s g(k) 0 k=C/L k k 1 0