1.56k likes | 1.75k Views
WZROST. 2. Pamiętasz?. Cykl koniunkturalny. Y (PKB). Szczyt. Szczyt. Dno. Dno. Dno. Ekspansja. Ekspansja. Ekspansja. Recesja. Recesja. Recesja. Czas. 1. KRÓTKIEGO OKRESU (1-2 lata?) dotyczy model IS/LM.
E N D
2 Pamiętasz? Cykl koniunkturalny Y (PKB) Szczyt Szczyt Dno Dno Dno Ekspansja Ekspansja Ekspansja Recesja Recesja Recesja Czas 1. KRÓTKIEGO OKRESU (1-2 lata?) dotyczy model IS/LM. W krótkim okresie możliwości produkcyjne nie są w pełni wyko-rzystane, więc zagregowany popyt decyduje o wielkości produkcji, Y (i bezrobocia). Jego zmiany powodują, że rzeczywista produkcja, Y, odchyla się od produkcji potencjalnej, Yp. Ceny są stabilne. 2. ŚREDNIEGO OKRESU (5-8 lat?) dotyczą model AD/AS i krzy-we Phillipsa. W długim okresie rzeczywista produkcja, Y, odchyla się i powraca do wielkości produkcji potencjalnej, Yp. Ceny się zmieniają, a za-sób czynników produkcji jest stały, więc – zwykle – produkcja po-tencjalna jest stała. 3. DŁUGIEGO OKRESU (kilkadziesiąt lat) dotyczy model wzrostu gospodarczego. Opisuje on zmiany produkcji potencjalnej, Yp, wywołane zmianami ilości i produktywności zasobów.
ZJAWISKO WZROSTU GOSPODARCZEGO WZROSTEM GOSPODARCZYM nazywamy powiększanie się re-alnej wartości PKB lub realnej wartości PKB per capita w gospo-darce. ZRÓŻNICOWANIE DŁUGOOKRESOWEJ STOPY WZROSTU JEST POWODEM WIELKICH RÓŻNIC i SZYBKICH ZMIAN POZIOMU ŻYCIA mieszkańców różnych krajów.
1. N E O K L A S Y C Z N Y M O D E L W Z R O S T U Od drugiej połowy XX w. popularnym sposobem opisu i wyjaś-niania wzrostu gospodarczego jest NEOKLASYCZNY MODEL WZROSTU (NMW) (nazywany także EGZOGENICZNYM mo-delem wzrostu lub modelem wyrostu Roberta Solowa). W NMW jest wykorzystywana MAKROEKONOMICZNA FUN-KCJA PRODUKCJI (MFP). Y=A·f(L, C) MFP opisuje związek ilości zużywanych: pracy, L, kapitału, C, z wielkością produkcji, Y (zakładamy, że inne czynniki produkcji w stosunkowo małym stopniu przyczyniają się do wzrostu pro-dukcji).
Y=A·f(L, C) Parametr „A” informuje o tzw. CAŁKOWITEJ PRODUKTYW-NOŚCI NAKŁADÓW (ang. TOTAL FACTOR PRODUCTIVITY; TFP) i o jej zmianach. Wzrost TFP oznacza, że produkcja rośnie, mimo zuży-wania nie zmienionej ilości pracy i kapitału. Na TFP wpływają np. postęp techniczny, wzrost kwalifikacji pracowników (zwiększenie się ilości kapitału ludzkiego w gospodarce).
W NMW zwykle zakłada się, że MFP jest JEDNORODNA STOP-NIA PIERWSZEGO, czyli że: α·z=f(α·x, α·y). Oznacza to występowanie w gospodarce STAŁYCH PRZY-CHODÓW ZE SKALI produkcji*. W takiej sytuacji: αt·Y = A·f(α·L, α·C) t = 1 ------------- *Rosnące (malejące) przychody ze skali występują – odpowiednio – dla t > 1 i t < 1.
Za realistycznością takiego założenia przemawiają DANE EMPI-RYCZNE i ARGUMENT O POWTARZALNOŚCI (ang. replica-tion argument). W szczególności argument o powtarzalności wyk-lucza malejące przychody (ze skali produkcji). ARGUMENT O POWTARZALNOŚCI Produkcję można zwiększać, zwiększając liczbę przedsiębiorstw. Nowe firmy zużyją wtedy tyle samo pracy i kapitału i wytworzą ty-le samo dóbr, co stare firmy. Zwiększenie nakładów spowoduje ta-kie same zwiększenie produkcji. Zatem, w gospodarce powinny występować albo stałe albo rosnące przychody ze skali produkcji!
Założenie o jednorodności stopnia pierwszego makroekonomicznej funkcji produkcji pozwala nadać jej tzw. MOCNĄ FORMĘ... Ponieważ: α·Y= A·f(α·L, α·C), to: Y= A·f(L, C) α·Y= A·f(α·L, α·C) (1/L)·Y= A·f[(1/L)·L, (1/L)·C][α = (1/L)!] y = A·f(k), gdzie: y to wielkość produkcji przypadająca na zatrudnionego (na oby-watela) (produktywność pracy) (ang. product–labor ratio)(y = Y/L); Ato stała, która opisuje poziom produktywności pracy uzależnio-ny m. in. od stanu technologii (czyli od postępu technicznego). k to ilość kapitału rzeczowego przypadająca na zatrudnionego (je-go, relacja kapitał/praca) (ang. capital–labor ratio),„uzbrojenie techniczne”(k = C/L).
Podsumujmy. Jądrem NMW jest MFP JEDNORODNA STOPNIA PIERWSZE-GO, czyli zapewniająca STAŁE PRZYCHODY ZE SKALI: Y=A·f(L, C) lub y = A·f(k).
Za pomocą NMW i MFP można próbować: a. ustalić WKŁAD POSZCZEGÓLNYCH CZYNNIKÓW PRODUKCJI WE WZROST GOSPODARCZY (ang. growth accounting), a także: b. bardziej szczegółowo wyjaśnić PRZEBIEG WZROSTU GOSPODARCZEGO (ang. growth theory).
PRZEBIEG PROCESU WZROSTU Neoklasyczny model wzrostu służy także do wyjaśnienia przebie-gu procesu wzrostu gospodarczego (ang. growth theory).
MFP o postaci: y=A·f(k) jest wygodnym narzędziem opisu wzrostu. a. Wzrost jest często definiowany właśnie jako zwiększanie się pro-dukcji per capita (W UPROSZCZENIU: „na zatrudnionego”). b. Kiedy wzrost definiujemy jako zwiększanie się globalnego PKB, przyczyną około 1/3 wzrostu okazuje się zwiększanie się zużywa-nej ilości pracy, a przyczyną 2/3 wzrostu jest zwiększanie się pro-duktywości tej pracy (czyli wzrost „y” we wzorze: „y = A·f(k)”!). A zatem, tłumacząc zmiany „y” we wzorze MFP „y=A·f(k)”, wyjaśniamy wzrost gospodarczy.
DWA ZAŁOŻENIA: ZAŁOŻENIE 1: Zajmiemy się uproszczoną („dwusektorową”) zamkniętą gospo-darką bez państwa. W takiej gospodarce S=I...
ZAŁOŻENIE 2: Opisując wzrost gospodarczy – za twórcami NMW - założymy MA-LEJĄCE PRZYCHODY OD KAPITAŁU; wzrost ilości kapitału, na zatrudnionego, k, powoduje – ich zdaniem - coraz wolniejszy przyrost porcji produkcji na zatrudnionego, y. Np. na rysunku poniżej widzimy wykres MFP Cobba-Douglasa: y=A·kx, gdzie x opisuje wpływ wzrostu nakładu kapitału rzeczowego na za-trudnionego, k=C/L, na produktywność pracy, y=Y/L. Wykres ten „spłaszcza się” stopniowo: zwiększaniu się „k” towarzyszą coraz mniejsze przyrosty „y”. Makroekonomiczna funkcja produkcji y=Y/L 0 k=C/L
Otóż zgodnie z NMW taka gospodarka „samoczynnie” osiąga tzw. stan WZROSTU ZRÓWNOWAŻONEGO („STAN USTALONY”) (ang. steady state).Wzrost zrównoważony to sytuacja, w której cztery zmienne: nakład pracy, L, nakład kapitału, C, liczba ludności, N produkcja, Y, rosną w równym tempie „n”. Zauważmy, że jeśli wzrost jest zrównoważony, produk-tywność pracy, y=Y/L, i współczynnik kapitał/praca, k=C/L, są stałe. TEZA: GOSPODARKA AUTOMATYCZNIE ROŚNIE W SPOSÓB ZRÓWNOWAŻONY
y=Y/L y=g(k) W zrozumieniu poglądów Solowa pomoże nam rysunek: Na osi poziomej mierzymy techniczne uzbrojenie pracy, k=C/L. Na osi pionowej umieszczono aż CZTERY zmienne uzależnione od poziomu technicznego uzbrojenia pracy, k: PO PIERWSZE, chodzi o produktywność pracy, y=Y/L. „y” zależy od „k” w sposób opisany MFP. 0 k=C/L
y=Y/L s·y y=g(k) y-sy=y(1-s) sy=sg(k) Na osi pionowej umieszczono aż CZTERY zmienne uzależnione od poziomu technicznego uzbrojenia pracy, k: PO DRUGIE, chodzi o oszczędności przypadające na jednego za-trudnionego, sy, gdzie s, czyli stała STOPA OSZCZĘDNOŚCI opisuje skłonność mieszkańców do oszczędzania. Zauważ: różnica: y - sy = y (1-s), czyli konsumpcja na zatrudnionego zwiększa się w miarę wzrostu „y” [przecież „s” jest stałą, a więc także „c” (STOPA KONSUMPCJI) jest stała, więc cy rośnie, kiedy y rośnie]. 0 k=C/L
y=Y/L s·y DC/L y=g(k) sy=sg(k)=C/L Na osi pionowej umieszczono aż CZTERY zmienne uzależnione od poziomu technicznego uzbrojenia pracy, k: PO TRZECIE, chodzi o RZECZYWISTE inwestycje na zatrud-nionego, C/L. (Ponieważ mamy do czynienia z zamkniętą gos-podarką bez państwa (z gospodarką „dwusektorową”), rzeczy-wiste inwestycje są równe rzeczywistym oszczędnościom, także w ujęciu „na zatrudnionego” (C/L=sY/L). 0 k=C/L
y=Y/L · s y (DC/L)E=n·k D C/L D C/L) ( E y=g(k) C/L=sy=sg(k) E Na osi pionowej umieszczono aż CZTERY zmienne uzależnione od poziomu technicznego uzbrojenia pracy, k: PO CZWARTE, chodzi nie o RZECZYWISTE, lecz o TAKIE in-westycje na zatrudnionego, (C/L)E, KTÓRYCH POZIOM ZA-PEWNIA WZROST ZRÓWNOWAŻONY (będę je dalej nazy-wał INWESTYCJAMI WYMAGANYMI). tgα=n α 0 k* k=C/L
y=Y/L · s y (DC/L)E=n·k D C/L D C/L) ( E y=g(k) C/L=sy=sg(k) E Otóż inwestycje wymagane, (C/L)E, są równe nk (zob. rysu-nek), gdzie „n” to tempo wzrostu liczby ludności, N. TA TEZA WYMAGA OSOBNEGO WYJAŚNIENIA. tgα=n α 0 k* k=C/L
Jaki poziom inwestycji zapewnia wzrost zrównoważony (ang. stea-dy state)? a. Zakładam: a) Stałą produktywność pracy, Y/L, (więc: L/L = Y/Y). b) Stały wskaźnik zatrudnienia, L/N (więc: L/L=N/N). c) Niezużywanie się kapitału rzeczowego. b. W takiej sytuacji wzrost jest zrównoważony (C, L, N i Y rosną w równym tempie), jeśli: C/C = L/L.
Jaki poziom inwestycji zapewnia wzrost zrównoważony (ang. stea-dy state)?? Wzrost jest zrównoważony, jeśli: C/C=L/L. Otóż C/C=L/L, wtedy i tylko wtedy, gdy C/L=nk. Przecież jeśli: C/L=nk =L/LC/L, to mnożąc to równanie stronami przez L/C, dostajemy: C/C=L/L. A zatem: jeśli C/L=nk to C/C=L/L. Wzrost jest zrównowa-żony, jeśli C/L=nk. Tempo tego zrównoważonego wzrostu wynosi wtedy n. Jednak ta kluczowa zmienna, czyli tempo wzrostu liczby ludności, n, jest w NMW EGZOGENICZNA (nie jest tłumaczona w ramach tego mo-delu). To PIERWSZA istotna WADA NMW...
DYGRESJA Jeśli zaś kapitał, C, się zużywa, powiedzmy, w tempie d na okres, dla zapewnienia wzrostu zrównoważonego inwestycje brutto na zatrudnionego muszą wynosić: C/L = (n+d)k, a nie: C/L=nk. Wszak z równania: C/L=(n+d)k wynika równanie: C/C=n+d. Aby to pokazać, dzielimy strony równania: C/L=(n+d)k przez: C/L=k.
DYGRESJA CD. • Z równania: C/L=(n+d)k wynika równanie: C/C=n+d. • PO UWZGLĘDNIENIU ZUŻYWANIA SIĘ KAPITAŁU, C, w tempie d inwestycje brutto na zatrudnionego równe: C/L= (n+d)k powodują, że kapitał, C, rośnie nie w tempie (n+d), lecz w tempie n. To z kolei oznacza, że L i C rosną w równym tempie n, czyli że wzrost jest zrównoważony.
CD DYGRESJI... • Kiedy zasób kapitału się zużywa w tempie d, wzrost zasobu kapi-tału, C, w tempie n nie wystarcza, aby capital-labor ratio, k,pozos-tało stałe. Zasób kapitału, C, musi DODATKOWO rosnąć w tem-pie d tylko po to, aby skompensowany został naturalny ubytek za-sobu kapitału, C, także następujący w tempie d. Zatem dla zapew-nienia wzrostu zrównoważonego zasób kapitału, C, musi rosnąć w tempie (n+d)! • KONIEC DYGRESJI
Jaki poziom inwestycji zapewnia wzrost zrównoważony (ang. steady state)? A zatem, kiedy kapitał się nie zużywa, wzrost jest zrównoważony, jeśli: C/L=nk. Oznacza to, że związek wielkości inwestycji wymaganych (C/L)E, i poziomu technicznego uzbrojenia pracy, k, jest liniowy. Przecież tempo wzrostu zatrudnienia, n, jest egzogeniczne i stałe! y=Y/L · s y (DC/L)E=n·k D C/L D C/L) ( E y=g(k) C/L=sy=sg(k) E tgα=n α 0 k* k=C/L
Wróćmy do głównej tezy twórców NMW: GOSPODARKA SA-MOCZYNNIE OSIĄGA WZROST ZRÓWNOWAŻONY. Oto uzasadnienie:
y=Y/L · s y Malejące przychody od kapitału sprawiają, że w miarę zwiększa-nia się technicznego uzbrojenia pracy, k, produktywność pracy, y, a zatem również rzeczywiste oszczędności na zatrudnionego, sy, i rzeczywiste inwestycje na zatrudnionego, C/L=sy najpierw ros-ną szybko, a potem – wolno (zob. rysunek). D C/L · ( D C/L) =n k E ( D C/L) E y=g(k) y* C/L=sy=sg(k) E C/L=nk α 0 k* k=C/L tgα =n
W miarę zwiększania się technicznego uzbrojenia pracy, k, pro-duktywność pracy, y, a zatem również rzeczywiste inwestycje na zatrudnionego, C/L=sy najpierw rosną szybko (SZYBCIEJ OD INWESTYCJI WYMAGANYCH, nk), a potem – wolno (WOL-NIEJ OD INWESTYCJI WYMAGANYCH, nk). Zatem istnieje tylko jeden poziom k (na rysunku: k*), przy którym rzeczywiste, C/L=sy, i wymagane (C/L)E=nk* inwestycje się zrównują (C/LE=nk*). y=Y/L · s y D C/L · ( D C/L) =n k E ( D C/L) E y=g(k) y* C/L=sy=sg(k) E C/L=nk α 0 k* k=C/L tgα =n
y=Y/L sy C/L (C/L)E Otóż, kiedy rzeczywiste inwestycje C/L=sy są większe od inwes-tycji wymaganych, czyli od tych, które zapewniają wzrost zrówno-ważony (tzn. stałość „k”), „k” się zwiększa! Rzeczywiste inwestycje C/L=sy są większe od inwestycji wymaganych pod warunkiem, że k<k*. Zatem: k<k*→ sy>nk→k↑. (C/L)E=nk y=g(k) sy=sg(k)= C/L y* E tgα=n α 0 k* k=C/L
y=Y/L sy C/L (C/L)E Odwrotnie. Kiedy rzeczywiste inwestycje C/L=sy są mniejsze od wymaganych, tzn. od tych, które zapewniają wzrost zrównoważony (czyli stałość k), k maleje! Rzeczywiste inwestycje C/L=sy są mniejsze od inwestycji wymaganych pod warunkiem, że k>k*. Zatem: k>k*→ sy<nk→k↓. (C/L)E=nk y=g(k) sy=sg(k)= C/L y* E tgα=n α 0 k=C/L k*
k<k*→ sy>nk→k↑. y=Y/L sy C/L (C/L)E (C/L)E=nk Zatem rzeczywiście: gospodarka SAMOCZYNNIE osiąga wzrost zrównoważony. Wszak: k>k*→ sy<nk→k↓. y=g(k) sy=sg(k)= C/L y* E tgα=n α 0 k=C/L k*
Innymi słowy Solow dowiódł, że proces wzrostu jest STABILNY. Gospodarka AUTOMATYCZNIE OSIĄGA STAN, W KTÓRYM WZROST JEST ZRÓWNOWAŻONY, I TRWA W TYM STANIE. y=Y/L sy C/L (C/L)E (C/L)E=nk y=g(k) sy=sg(k)= C/L y* E tgα=n α 0 k=C/L k*
ZADANIE Gospodarka odpowiada modelowi Solowa; oto MFP: y=A·kx, gdzie y to produktywność pracy, A to stała równa 2, x równa się 1/2 , a k to techniczne uzbrojenie pracy. Tempo wzrostu ilości pracy, n, wy-nosi 3% rocznie, skłonność do oszczędzania, KSO, równa się 0,3. a) Na rysunku pokaż wzrost zrównoważony z krzywymi: produkcyj-ności pracy, oszczędności/inwestycji na zatrudnionego i inwestycji wymaganych. (Pamiętaj o oznaczeniach!).
y=Y/L sy C/L (C/L)E (C/L)E=0,03k Gospodarka odpowiada modelowi Solowa; oto MFP: y=A·kx, gdzie y to produktywność pracy, A to stała równa 2, x równa się 1/2 , a k to techniczne uzbrojenie pracy. Tempo wzrostu ilości pracy, n, wy-nosi 3% rocznie, skłonność do oszczędzania, KSO, równa się 0,3. a) Na rysunku pokaż wzrost zrównoważony z krzywymi: produkcyj-ności pracy, oszczędności/inwestycji na zatrudnionego i inwestycji wymaganych. (Pamiętaj o oznaczeniach!). y=2k1/2 y* C/L=0,32k1/2 E 0 k k* b) W jakim tempie rośnie ta gospodarka?
y=Y/L sy C/L (C/L)E (C/L)E=0,03k Gospodarka odpowiada modelowi Solowa; oto MFP: y=A·kx, gdzie y to produktywność pracy, A to stała równa 2, x równa się 1/2 , a k to techniczne uzbrojenie pracy. Tempo wzrostu ilości pracy, n, wy-nosi 3% rocznie, skłonność do oszczędzania, KSO, równa się 0,3. a) Na rysunku pokaż wzrost zrównoważony z krzywymi: produkcyj-ności pracy, oszczędności/inwestycji na zatrudnionego i inwestycji wymaganych. (Pamiętaj o oznaczeniach!). y=2k1/2 y* C/L=0,3 2 k1/2 E 0 k k* b) W jakim tempie rośnie ta gospodarka? Jak wiadomo, taka gospodarka samoczynnie osiąga stan wzrostu zrównoważonego. L, Y i C rosną wtedy w tempie równym tempu wzrostu liczby ludności, N. Ponieważ tempo wzrostu liczby ludnoś-ci wynosi 3%, więc tempo wzrostu gospodarczego w tej gospodarce (tempo wzrostu Y) także wynosi 3% rocznie. c) Oblicz, ile wynosi relacja kapitał/praca.
y=Y/L sy C/L (C/L)E (C/L)E=0,03k Gospodarka odpowiada modelowi Solowa; oto MFP: y=A·kx, gdzie y to produktywność pracy, A to stała równa 2, x równa się 1/2 , a k to techniczne uzbrojenie pracy. Tempo wzrostu ilości pracy, n, wy-nosi 3% rocznie, skłonność do oszczędzania, KSO, równa się 0,3. a) Na rysunku pokaż wzrost zrównoważony z krzywymi: produkcyj-ności pracy, oszczędności/inwestycji na zatrudnionego i inwestycji wymaganych. (Pamiętaj o oznaczeniach!). y=2k1/2 y* C/L=0,3 2 k1/2 E 0 k k* b) W jakim tempie rośnie ta gospodarka? Jak wiadomo, taka gospodarka samoczynnie osiąga stan wzrostu zrównoważonego. L, Y i C rosną wtedy w tempie równym tempu wzrostu liczby ludności, N. Ponieważ tempo wzrostu liczby ludnoś-ci wynosi 3%, więc tempo wzrostu gospodarczego w tej gospodarce (tempo wzrostu Y) także wynosi 3% rocznie. c) Oblicz, ile wynosi relacja kapitał/praca. W stanie wzrostu zrównoważonego capital-labor ratio, k, osiąga taki poziom, że wymagane i rzeczywiste inwestycje są równe: 0,03k*=0,32k*1/2. Zatem: 0,03k*= 0,3 2 k*1/2 , to k*-1/2 = 0,05, to 1/k*1/2 = 0,05, to k*1/2 = 20, to k*=400. d) Oblicz, ile wynosi wielkość konsumpcji na zatrudnionego.
y=Y/L sy C/L (C/L)E (C/L)E=0,03k Gospodarka odpowiada modelowi Solowa; oto MFP: y=A·kx, gdzie y to produktywność pracy, A to stała równa 2, x równa się 1/2 , a k to techniczne uzbrojenie pracy. Tempo wzrostu ilości pracy, n, wy-nosi 3% rocznie, skłonność do oszczędzania, KSO, równa się 0,3. a) Na rysunku pokaż wzrost zrównoważony z krzywymi: produkcyj-ności pracy, oszczędności/inwestycji na zatrudnionego i inwestycji wymaganych. (Pamiętaj o oznaczeniach!). y=2k1/2 y* C/L=0,3 2 k1/2 E 0 k k* b) W jakim tempie rośnie ta gospodarka? Jak wiadomo, taka gospodarka samoczynnie osiąga stan wzrostu zrównoważonego. L, Y i C rosną wtedy w tempie równym tempu wzrostu liczby ludności, N. Ponieważ tempo wzrostu liczby ludnoś-ci wynosi 3%, więc tempo wzrostu gospodarczego w tej gospodarce (tempo wzrostu Y) także wynosi 3% rocznie. c) Oblicz, ile wynosi relacja kapitał/praca. W stanie wzrostu zrównoważonego capital-labor ratio, k, osiąga taki poziom, że wymagane i rzeczywiste inwestycje są równe: 0,03k*=0,32 k*1/2. Zatem: 0,03k*= 0,3 2 k*1/2 , to k*-1/2=0,05, to 1/k*1/2 = 0,05, to k*1/2 = 20, to k*=400. d) Oblicz, ile wynosi wielkość konsumpcji na zatrudnionego. (1-s)y = 7/10y=7/1024001/2=1,420=28.
A zatem Solow dowiódł, że proces wzrostu jest STABILNY. Gospodarka AUTOMATYCZNIE OSIĄGA STAN, W KTÓRYM WZROST JEST ZRÓWNOWAŻONY, I TRWA W TYM STANIE. y=Y/L sy C/L (C/L)E (C/L)E=nk y=g(k) y* sy=sg(k)= C/L E tgα=n α 0 k=C/L k*
PRZYŚPIESZANIE WZROSTU GOSPODARCZEGO Czy zwiększenie stopy oszczędności, s, i technicznego uzbrojenia pracy, k, zapewni TRWAŁE przyśpieszenie wzrostu?
y=Y/L · s y · ( C/L ) = n k D D C/L E D ( C/L) E Czy zwiększenie stopy oszczędności, s, i technicznego uzbrojenia pracy, k, zapewni TRWAŁE przyśpieszenie wzrostu? y=g(k) · · s’ y=s’ g(k) E 1 · · s y=s g(k) E 0 k=C/L k k 1 0
PRZYŚPIESZANIE WZROSTU GOSPODARCZEGO y=Y/L · s y · ( C/L ) = n k D D C/L E D ( C/L) E Czy zwiększenie stopy oszczędności, s, i technicznego uzbrojenia pracy, k, zapewni TRWAŁE przyśpieszenie wzrostu? y=g(k) · · s’ y=s’ g(k) E 1 · · s y=s g(k) E 0 k=C/L k k 1 0 W punkcie E1 tempo wzrostu nadal równa się tempu wzrostu licz-by ludności, n, jak miało to miejsce w punkcie E0. Oznacza to, że – mimo przesunięcia się w górę wykresu funkcji oszczędności - NIE DOSZŁO DO TRWAŁEGO PRZYŚPIESZENIA WZROSTU GOSPODARCZEGO.
A zatem zgodnie z neoklasycznym modelem wzrostu W DŁUGIM OKRESIE stopa oszczędności, s, nie wpływa na stopę wzrostu gos-podarczego. A jednak statystyka ujawnia korelację tych dwóch zmien-nych... Oto odkryliśmy DRUGĄ ważną NIEDOSKONAŁOŚĆ NE-OKLASYCZNEGO MODELU WZROSTU!
y=Y/L A CO DZIEJE SIĘ W TRAKCIEOKRESU, GDY„k” ROŚNIE Z k0 DO k1? · s y D · ( C/L ) = n k D C/L E D ( C/L) E y=g(k) y1 y0 · · s’ y=s’ g(k) E 1 · · s y=s g(k) E 0 k k k=C/L 1 0
y=Y/L Zwiększanie się k powoduje wtedy DODATKOWE PRZYROSTY PRODUKCJI PONAD TE SPOWODOWANE ZWIĘKSZENIEM SIĘ LICZBY PRACUJĄCYCH (WSZAK y ROŚNIE Z y0 DO y1!). Wzrost gospodarczy przyśpiesza. Efekt ten zanika po powrocie gospodarki na ścieżkę wzrostu zrównoważonego w punkcie E1. · s y D · ( C/L ) = n k D C/L E D ( C/L) E y=g(k) y1 y0 · · s’ y=s’ g(k) E 1 · · s y=s g(k) E 0 k k k=C/L 1 0
Produkcja Wzrost „s” powoduje PRZEJŚCIOWE PRZYŚPIESZENIE TEM-PA WZROSTU. Po powrocie gospodarki na ścieżkę wzrostu zrów-noważonego stopa wzrostu powraca do poprzedniego poziomu (zob. rysunek niżej). Nowa ścieżka wzrostu zrównoważonego α1 Ścieżka przejściowa wzrostu przyśpieszonego Stara ścieżka wzrostu zrównoważonego α2>α1 α1 0 Lata
OPŁACALNOŚĆ OPERACJI PRZYŚPIESZENIA WZROSTU JEST SPRAWĄ OTWARTĄ... Przecież wzrost skłonności do oszczędzania z s do s’oznacza spadek skłonności do konsumpcji (z AE/Ak0 do BE1/Bk1 na rysunku poniżej). y=Y/L · s y · D ( C/L ) = n k D C/L E D ( C/L) E B y=g(k) y1 y0 A · · s’ y=s’ g(k) · E 1 · · s y=s g(k) · E 0 k k k=C/L 1 0 Ceną za PRZEJŚCIOWE przyśpieszenie wzrostu MOŻE się oka-zać zmniejszenie się konsumpcji w początkowej fazie tej operacji.
„ZŁOTA REGUŁA” AKUMULACJI KAPITAŁU Jaki poziom skłonności do oszczędzania, s, zapewnia zmaksyma-lizowanie poziomu konsumpcji per capita w długim okresie?
Jaki poziom skłonności do oszczędzania, s, zapewnia zmaksyma-lizowanie poziomu konsumpcji per capita w długim okresie? Taki, który zapewnia ZMAKSYMALIZOWANIE POZIOMU KONSUMPCJI PER CAPITA W MOMENCIE WEJŚCIA NA ŚCIEŻKĘ WZROSTU ZRÓWNOWAŻONEGO! Od tego momentu konsumpcja per capita rośnie w stałym tempie, które nie zależy od poziomu konsumpcji per capita w tym momencie. Zatem jeśli w tym momencie konsumpcja per capita została zmaksymalizowana, to także w dowolnie długim okresie osiąga ona maksymalną możliwą wielkość.
Jaki poziom skłonności do oszczędzania, s, zapewnia zmaksyma-lizowanie poziomu konsumpcji per capita w długim okresie? Taki, który zapewnia zmaksymalizowanie poziomu konsumpcji per capita w momencie wejścia na ścieżkę wzrostu zrównowa-żonego! NA RYSUNKU PONIŻEJ ODPOWIADA JEJ PIONO-WY CZERWONY ODCINEK, KTÓREGO DŁUGOŚĆ ZMIE-NIA SIĘ WRAZ Z POZIOMEM k (por. np. k1 i k2) . y (C/L)E=(n+d)k y=g(k) E 0 k k1 k2