240 likes | 477 Views
BADAN PUSAT STATISTIK. Identifikasi Lokasi Pemusatan Kegiatan Sosial Ekonomi (Pemanfaatan Data Podes 2008). Uzair Suhaimi uzair@bps.go.id uzairsuhaimi@wordpress.com Direktur Statistik Ketahanan Sosial Badan Pusat Statistik. Latar Belakang.
E N D
BADAN PUSAT STATISTIK Identifikasi Lokasi Pemusatan Kegiatan Sosial Ekonomi(Pemanfaatan Data Podes 2008) Uzair Suhaimi uzair@bps.go.id uzairsuhaimi@wordpress.com Direktur Statistik Ketahanan Sosial Badan Pusat Statistik
Latar Belakang • (Ada) Variasi intensitas kegiatan sosial ekonomi (antar kawasan wilayah) • (kecenderungan) Pemusatan di suatu wilayah (tertentu) • Ketimpangan (tingkat pemusatan) antar wilayah • (Perlu) Pemetaan lokasi kegiatan sosial ekonomi • Identifikasi lokasi pemusatan dan ketimpangan • Visualisasi dalam bentuk pemetaan tematik • Implikasi kebijakan (dari Pata) • (Basis untuk) Alokasi sumber daya dan program berbasis lokasi geografis (atau wilayah) • Pentingnya perhatian terhadap interaksi sosial (u/ lokasi pemusatan/non-pemusatan)
Kegiatan Sosial Ekonomi ? • Kegiatan ekonomi penduduk (dilihat dari lapangan usaha dan jenis produksi) • (Indikasi kegiatan dilihat dari) Ketersediaan fasilitas ekonomi • (Indikasi kegiatan dilihat dari) Ketersediaan fasilitas sosial dasar 9 Desember 2010 3
Pembentukan Pemusatan • Relokasi kegiatan sosial ekonomi • Ketersediaan faktor produksi • Ketersediaan sarana penunjang • Minimalkan biaya produksi dan transportasi • Pemusatan membentuk klaster • Knowledge spillovers: diseminasi informasi dan pengetahuan • Spillover effects: infrastruktur untuk mobilitas antar wilayah 9 Desember 2010 4
Pengguna Potensial dan Manfaat • Pemerintah pusat dan daerah Menentukan lokasi prioritas pembangunan ekonomi, sosial, dan infrastruktur,dsb • Dunia usaha dan masyarakat umum (Membanu dunia usaha dalam) Menentukan lokasi: target investasi, pengembangan jejaring usaha dan kerja sama, perluasan wilayah pemasaran, dsb • Akademisi dan peneliti • (Membantu akademisi dan peneliti dalam studi lanjut untuk) Menentukan zonasi wilayah: perencanaan wilayah dan tata ruang, pengembangan kawasan, pembangunan regional, dsb 9 Desember 2010 5
Metodologi • Sumber data • Podes 2008 • Peta elektronik • Variabel dan tema • Variabel berskala ukur interval/rasio • Jumlah peta tematik sebanyak 52 tema (yang dihitung secara nasional tetapi disajikan per pulau/kepulauan utama) • Penyajian peta tematik: smaller is better • (Kawasan yang dibangun dengan unit analisis) Desa (prioritas utama) • Kecamatan (prioritas kedua) 9 Desember 2010 6
Exploratory Spatial Data Analysis • Metode ESDA: • (Untuk men-) Deskripsi(kan) dan (mem)visualisasi(kan) sebaran/asosiasi spasial (“relatif” terhadap “tetangga”) • (Untuk meng) Identifikasi lokasi pemusatan (cluster/hot spot) dan pencilan (outlier) • Teknik ESDA • Global Spatial Autocorrelation (Global Moran’s I): (Untuk men-) Deteksi ada tidaknya kecenderungan pemusatan (clustering) • Local Indicators for Spatial Association (LISA): (Untuk meng-)Identifikasi lokasi dan anggota pemusatan/pencilan (cluster/outlier) 9 Desember 2010 7
Tahapan Analisis • Kalkulasi Global Moran’s I: • Jika nilai Standardized I positif autokorelasi positif (tendensi pemusatan) • Jika nilai Standardized I negatif autokorelasi negatif (tendensi pencilan atau random) • Kalkulasi LISA dan signifikansinya • Setiap unit analisis memiliki skor LISA (Zxi dan WZxi) • Setiap unit analisis memiliki nilai siginifikansi • Visualisasi dalam Moran Scatterplot 9 Desember 2010 8
Global Moran’s I Formula Keterangan: µ = rata-rata variabel x, wij = elemen spatial weight matrix, n = jumlah wilayah, xi = nilai unit analisis i, xj = nilai unit analisis tetangga Interpretasi: Rata-rata teoritis = -1/(n-1) • Jika I ≥ rata-rata teoritis tendensi pemusatan (tinggi maupun rendah) • Jika I < rata-rata teoritis tendensi random atau pencilan (ketimpangan) 9 Desember 2010 9
LISA Formula -1 ≤ Ii ≤ 1 Keterangan: µ = rata-rata variabel x, wij = elemen spatial weight matrix, n = jumlah wilayah, xi = nilai unit analisis i, xj = nilai unit analisis tetangga Interpretasi: • Setiap unit analisis memiliki nilai koordinat (Zxi , WZxi) • Zxi adalah nilai standardized skor I utk unit analisis ke-i • WZxi adalah nilai standardized skor I tetangga unit analisis ke-i • Seluruh koordinat (Zxi , WZxi) divisualisasi dalam Moran Scatterplot 9 Desember 2010 10
Moran Scatterplot Moran Scatterplot Diagram • Interpretasi: • Kuadran I (HH) = wilayah tinggi dikelilingi tetangga yang tinggi • Kuadran II (LH) = wilayah rendah dikelilingi tetangga yang tinggi • Kuadran III (LL) = wilayah rendah dikelilingi tetangga yang rendah • Kuadran IV (HL) = wilayah tinggi dikelilingi tetangga yang rendah WZX ZX • Kuadran I dan III indikasi lokasi klaster (cluster) atau pemusatan. • Kuadran II dan IV indikasi lokasi pencilan (outlier). 9 Desember 2010 11
Spatial Weight Matrix • ESDA memerlukan matriks penimbang spasial (representasi tetangga bagi setiap wilayah) • Tobler’s Law (1970) "everything is related to everything else, but near things are more related than distant things." • Tetangga adalah unit analisis lain yang berbatasan langsung atau memiliki keterkaitan/hubungan atas dasar kriteria/skenario tertentu • Pilihan skenario: • Simple Contiguity: Rook, Bishop, Queen • Distance Criterion: Distance metric, K-nearest neighbor • Based on economic or social network structure • Skenario Spatial Weight Matrix yang dipilih adalah Queen 9 Desember 2010 12
Format Publikasi • Intensitas kegiatan sosial ekonomi: • Diukur secara nasional • Bisa diperbandingan antar unit analisis dan antar wilayah (apple to apple). • Peta tematik disusun ke dalam 7 wilayah meliputi: • Sumatera • Jawa dan Bali • Nusa Tenggara • Kalimantan • Sulawesi • Maluku • Papua 9 Desember 2010 13
Interpretasi Peta Tematik • Indikator asosiasi spasial hasil penghitungan statistik LISA: • Merah lokasi pemusatan (cluster) tinggi (HH) • Biru lokasi pemusatan (cluster) rendah (LL) • Hijau lokasi pencilan (outlier) tinggi (HL) • Kuning lokasi pencilan (outlier) rendah (LH) • Lokasi pemusatan maupun pencilan dibedakan menjadi dua kategori: • Signifikan (pseudo alpha ≤ 5%.) unit analisis diyakini sbg anggota kuadran • Tidak signifikan (pseudo alpha > 5%) unit analisis menjadi anggota kuadran tetapi keterkaitan dengan tetangga: • tidak setara/searah (untuk wilayah pemusatan) • tidak berpola atau acak (untuk wilayah pencilan) 9 Desember 2010 14
Implikasi Peta Tematik • Cakupan dan kedalaman informasi pada level desa atau kecamatan • Makna lokasi pemusatan atau pencilan • Pemusatan (cluster): intensitas kegiatan searah/setara: sama-sama tinggi (klaster tinggi) atau sama-sama rendah (klaster rendah) • Pencilan (outlier): intensitas kegiatan berbeda secara ekstrim: berbeda sangat tinggi (pencilan tinggi) ataupun sangat rendah (pencilan rendah) • Implikasi pelaksanaan program pembangunan tertentu: • Pada lokasi pemusatan tinggi akan berimbas secara luas • Pada lokasi pemusatan rendah akan berimbas sangat lamban atau sangat terbatas • Pada lokasi pencilan tidak akan berimbas kepada unit-unit analisis lain sekitarnya 9 Desember 2010 15
KECAMATAN DI JAWA DAN BALI MENURUT TINGKAT PEMUSATAN TANAMAN PADI 10 Desember 2010
Kecamatan-kecamatan yang terjadi pemusatan tinggi dalam inset : 10 Desember 2010
KECAMATAN DI PAPUA MENURUT TINGKAT PEMUSATAN PALAWIJA 10 Desember 2010
KECAMATAN DI SUMATERA MENURUT KONVERSI LAHAN PERTANIAN 10 Desember 2010
DESA DI KALIMANTAN MENURUT PERSENTASE KELUARGA PENGGUNA LISTRIK NON-PLN 10 Desember 2010
KECAMATAN DI NUSA TENGGARA MENURUT PERSENTASE DESA YANG TERDAPAT PENJUAL LPG 10 Desember 2010
KECAMATAN DI SULAWESI MENURUT PERSENTASE DESA YANG TERDAPAT PANGKALAN / AGEN MINYAK TANAH 10 Desember 2010
DESA DI WILAYAH MALUKU MENURUT KEJADIAN PENCEMARAN LINGKUNGAN HIDUP 10 Desember 2010