900 likes | 1.86k Views
REGLAS DE LOS SIGNOS. MAPA DE NAVEGACIÓN. Ejercicios resueltos. Reglas de los Signos Índice. Objetivo General. Problemas propuestos. Objetivos específicos: Objetivo 1 Objetivo 2 Objetivo 3 Objetivo 3 Objetivo 5 Objetivo 6 Objetivo 7. Ejemplos. Soluciones. ÍNDICE.
E N D
MAPA DE NAVEGACIÓN Ejercicios resueltos Reglas de los Signos Índice Objetivo General Problemas propuestos Objetivos específicos: Objetivo 1 Objetivo 2 Objetivo 3 Objetivo 3 Objetivo 5 Objetivo 6 Objetivo 7 Ejemplos Soluciones
ÍNDICE Objetivo General Objetivos Específicos Ejercicios Resueltos Objetivo 1 y 2 Objetivo 3 y 4 0bjetivo 5 Objetivo 6 Objetivo 7 Problemas Propuestos Soluciones a los problemas propuestos
Índice Objetivo General: Al terminar esta Unidad resolverás ejercicios y problemas en los que apliques las reglas de los signos.
Índice Objetivos Específicos • Recordarás las reglas de los signos para la suma • Recordarás las reglas de los signos para la diferencia • Recordarás las reglas de los signos para la multiplicación • Recordarás las reglas de los signos para la división.
Índice 5.- Recordarás el orden en que deben realizarse las operaciones aritméticas y algebraicas, incluyendo el uso de símbolos de agrupación. 6. Aplicarás las reglas de los signos y los símbolos de agrupación en la resolución de ejercicios algebraicos. Ver índice objetivo 7. Aplicarás las reglas de los signos y los símbolos de agrupación en la resolución de problemas de casos reales. Ver índice objetivo
Objetivos específicos Ejemplos 1.) Al sumar (3) + (2) ambos tienen signo positivo, por esto el resultado: es 5 positivo, aunque el signo + no se escriba. 2.) Al sumar (–16) + (13), el resultado es – 3, puesto que al restar 13 de 16 se obtiene 3, y el número mayor tiene signo negativo.
Para la suma: a) Si se tienen números de igual signo: Para sumar dos o más números de igual signo, lo que se tiene que hacer es sumar las cantidades y al resultado anteponerle el mismo signo. b) Si se tienen números de signos diferentes: Para sumar dos números de diferentes signos, se resta el número menor del número mayor y el resultado lleva el signo del número mayor. Ejemplos
Para la diferencia a) Si se tienen números de igual signo: Para obtener la diferencia de dos números positivos, lo que se tiene que hacer es restar las cantidades y al resultado anteponerle un signo positivo si se resta un número menor de otro mayor que él, y un signo negativo en caso contrario.
Para obtener la diferencia de dos números negativos, lo que se tiene que hacer es restar las cantidades y al resultado anteponerle un signo negativo si se resta un número menor de otro mayor que él, y un signo positivo en caso contrario.
b) Si se tienen números de signos diferentes: Para obtener la diferencia de dos números de diferentes signos, se debe sumar al primero (el minuendo) el opuesto del número que se resta (el sustraendo). El opuesto de un número es ese mismo número, con el signo contrario. Ejemplos
Ejemplos 1.) Al restar (8) – (2) ambos tienen signo positivo y el resultado es 6 porque 2 es menor que 8. 2.) Al restar (2) – (8) ambos tienen signo positivo y el resultado es – 6 porque 8 es menor que 2.
3.) Al restar (– 8) – (– 2) ambos tienen signo negativo y el resultado es – 6 porque 2 es menor que 8. 4.) Al restar (– 2) – (– 8) ambos tienen signo positivo y el resultado es + 6 porque 8 es menor que 2.
Índice 5.) Para restar (– 8) – (2) se suma a (– 8) el opuesto de (2), es decir: (– 8) – (2) = (– 8) + (– 2) = – 10. 6.) Para restar (8) – (– 2) se suma a (8) el opuesto de (– 2), es decir: (8) – (– 2) = (8) + (2) = 10.
Ejemplos Para la Multiplicación Leyes de los signos para la multiplicación o producto: El producto de elementos con signos iguales es un elemento positivo. El producto de elementos con signos diferentes es un elemento negativo.
Ejemplos 1. El resultado es positivo porque los dos factores son del mismo signo. (– a) (– b) = ab 2. El resultado es negativo porque los dos factores son de signos diferentes. (a) (– b) = – ab
Objetivos específicos 3.) El resultado es negativo porque los dos factores son de signos diferentes. (– x) (y) = – xy 4.) El resultado es positivo porque los dos factores son del mismo signo. (x) (y) = xy
Ejemplos Para la División El cociente de elementos con signos iguales es un elemento positivo. El cociente de elementos de signos diferentes es un elemento negativo.
Objetivos específicos Ejemplos 1.)El resultado es positivo puesto que los dos elementos del cociente son del mismo signo. a ÷ b = – a ÷ – b = 2.) El resultado es negativo puesto que los dos elementos del cociente son de signos diferentes. – a ÷ b = a ÷ – b =
Orden de las operaciones Se aplica el siguiente orden: 1.- Primero se evalúan las expresiones dentro de los símbolos de agrupación, incluyendo paréntesis: ( ), corchetes: [ ], o llaves: { }.
Si la expresión contiene paréntesis anidados (un par de paréntesis dentro de otro par), primero se evalúa la expresión que está dentro de los paréntesis internos. 2.- Después se evalúan todos los términos que tengan exponentes y raíces.
3.- Luego, se evalúan todas las multiplicaciones o divisiones en el orden en que se presentan, trabajando de izquierda a derecha. 4.- Por último, se evalúan todas las sumas y restas en el orden en que se presentan, trabajando de izquierda a derecha.
Es importante tener presente que una barra de fracción actúa como un símbolo de agrupación. Así, cuando se evalúan expresiones con una barra de fracción, se trabaja por separado arriba y abajo de la barra de fracción.
También es importante recordar que un signo menos precediendo a un símbolo de agrupación significa que los elementos agrupados al interior de los paréntesis, corchetes o llaves, deben multiplicarse por –1 o, lo que es lo mismo, cambiarles el signo al eliminar el símbolo de agrupación. Ejemplos
1.) Para simplificar la expresión: 3a + {–5x – [– a + (9x – a – x)]} Primero se empieza por suprimir el paréntesis, por ser el más interno: = 3a + {–5x – [– a + 9x – a – x]} Suprimiendo luego el corchete queda: = 3a + {–5x + a – 9x + a + x}
Cuando se suprimen las llaves se tiene: = 3a – 5x + a – 9x + a + x Y, simplificando, queda: = 5a – 13x
2.) Para simplificar la expresión: {2a + [a – (a+1)]} ÷ {3a + [a – (2a +3) +2]} Como la división indicada se representa por una barra de fracción, al reescribir la expresión queda:
Ahora, se eliminan los paréntesis arriba y abajo de la barra: Luego se eliminan ambos corchetes: Y, finalmente, ambas llaves: Al reducir el numerador y el denominador se obtiene la expresión simplificada:
En muchas ocasiones, especialmente cuando existen numerosos signos de agrupación, es conveniente ir reduciendo las expresiones que se obtienen en cada paso para no terminar con expresiones demasiado largas, en las que es más fácil equivocarse al reducirlas.
Simplificar la expresión: Eliminando los paréntesis al interior del corchete queda: = 5{– (a + b) – 3[– 2a + 3b – a – b – a – b – 2a + 2b] –a}
Se reduce la expresión que quedó dentro del corchete: = 5{– (a + b) – 3[– 6a + 3b] – a} Ahora se eliminan el corchete y el otro paréntesis: = 5{– a – b + 18a – 9b –a}
Objetivos específicos Y se vuelve a reducir: = 5{16a – 10b} Finalmente, se elimina la llave y se obtiene: = 80a – 50b
Ejercicios resueltos Objetivo 1 y 2. Recordarás las reglas de los signos para la suma y la diferencia. Obtén el resultado 1.) 6 + 8 + 7 + 1 = 22 2.) – 6x – (– 10x) = – 6x + 10x = 4x
Índice 3.) – 8 + (– 4) = – 12 4.) (–7) + (–2) + (–5) = – 14 5.) – 3ab + 2ab = – 1ab = – ab
Objetivo 3 y 4. Recordarás las reglas de los signos para la multiplicación y la división. Evalúa: 1.) (24a) · ( – 3b) = – 72ab 2.) 72 ÷ (– 8) = – 9
Índice 3.) –36 ÷ (– 6) = 6 4.) (5x) · (4y) = 20xy 5.) – 2mn ÷ (– 4mn) 6.) – 9abc ÷ 3abc = – 3
Objetivo 5. Recordarás el orden en que deben realizarse las operaciones aritméticas y algebraicas, incluyendo el uso de símbolos de agrupación. Simplifica las siguientes expresiones: 1.) x – [3x + 2(– x + 1)] = x – [3x – 2x + 2] = x – 3x + 2x – 2 = – 2
Índice 3.) 5a + {a + [ a + 3b + (a + b)] } = 5a + {a + [ a + 3b + a + b] } = 5a + {a + [ 2a + 4b] } = 5a + {a + 2a + 4b } = 5a + {3a + 4b } = 8a + 4b
Objetivo 6 Aplicarás las reglas de los signos y los símbolos de agrupación en la resolución de ejercicios algebraicos. Calcula el valor numérico de las expresiones indicadas:
Objetivos específicos
Objetivo 7. Aplicarás las reglas de los signos en la resolución de problemas de casos reales. 1.) En la Ciudad de México la temperatura máxima de un día cualquiera fue de 30° C y la mínima de 8° C. Encuentra el cambio de temperatura. El cambio de temperatura es la diferencia entre la temperatura máxima y la mínima. Entonces, como 30 – 8 = 22, el cambio de temperatura fue de + 22º C.
Índice 2.) En tu tarjeta de crédito tienes un adeudo de $ 3,765.00. Vas a pagar el pago mínimo, que es de $ 755.00, ¿Cuál es tu adeudo después del pago? Considerando el adeudo como un saldo negativo, y el pago como positivo, tienes – 3,765.00 + 755.00 = – 3,010.00, por lo cual tu adeudo después del pago es de $ 3,010.00
Problemas propuestos 1) Resta (35) de (– 42) 2) Obtén: (– 8) – (4) 3) Evalúa: (– 4) – (–12) Realiza la operaciones indicadas
4) Suma los siguientes números: 2, – 3, 7 5) Resta (– 31) de (– 11) 6) Suma: 3m, –2m, 4m
7) Resta: –3(a – 2b + 2c) de (a – 2b + 2c) 8) Resta: –5(a2 – 2ab) del resultado de sumar 7(a2 – 2ab) con –9(a2 – 2ab)
Calcula: 9) (12x) · (– 2y) 10) – 6ab ÷ (2ab) 11) 42 ÷ (– 7) 12) (2z) · ( – 14z) 13) – 81 ÷ 9 14) – 6mn ÷ 8mn